Properties

Label 2.23.ae_ah
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 - 4 x - 7 x^{2} - 92 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.0297380745307$, $\pm0.696404741197$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-19})\)
Galois group:  $C_2^2$
Jacobians:  $0$
Isomorphism classes:  8

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $427$ $264313$ $142945936$ $78266515369$ $41399206944907$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $500$ $11744$ $279684$ $6432100$ $147994670$ $3404840620$ $78310450564$ $1801149081632$ $41426516352500$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23^{3}}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-19})\).
Endomorphism algebra over $\overline{\F}_{23}$
The base change of $A$ to $\F_{23^{3}}$ is 1.12167.aie 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.e_ah$2$(not in LMFDB)
2.23.i_ck$3$(not in LMFDB)
2.23.ai_ck$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.e_ah$2$(not in LMFDB)
2.23.i_ck$3$(not in LMFDB)
2.23.ai_ck$6$(not in LMFDB)
2.23.a_be$6$(not in LMFDB)
2.23.a_abe$12$(not in LMFDB)