Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x + 21 x^{2} - 790 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.0235106226797$, $\pm0.643156043987$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $63$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5463$ | $38585169$ | $241739388900$ | $1516753707246729$ | $9468223616028873303$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $6184$ | $490300$ | $38940964$ | $3077039350$ | $243085673878$ | $19203901424890$ | $1517108815144324$ | $119851594892692900$ | $9468276076763436904$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=14 x^6+13 x^5+29 x^4+55 x^3+71 x^2+61 x+48$
- $y^2=32 x^6+74 x^5+62 x^4+41 x^3+54 x^2+74 x+73$
- $y^2=x^6+3 x^3+26$
- $y^2=61 x^6+5 x^5+26 x^4+35 x^3+36 x^2+26 x+44$
- $y^2=31 x^6+29 x^5+68 x^4+18 x^3+14 x^2+24 x+67$
- $y^2=49 x^6+69 x^5+52 x^4+34 x^3+14 x^2+59 x+71$
- $y^2=46 x^6+39 x^5+78 x^4+42 x^3+54 x^2+8 x+60$
- $y^2=53 x^6+27 x^4+18 x^3+67 x^2+35 x+15$
- $y^2=18 x^6+49 x^5+10 x^4+34 x^3+13 x^2+12 x+45$
- $y^2=49 x^6+4 x^5+38 x^4+60 x^3+23 x^2+75 x+21$
- $y^2=68 x^6+11 x^5+24 x^4+15 x^3+45 x^2+76 x+47$
- $y^2=62 x^6+42 x^5+10 x^4+14 x^3+42 x^2+69 x+36$
- $y^2=63 x^6+27 x^5+71 x^4+7 x^3+28 x^2+9 x+34$
- $y^2=61 x^6+51 x^5+70 x^4+78 x^3+72 x^2+42 x+28$
- $y^2=58 x^6+22 x^5+49 x^4+69 x^3+17 x^2+78 x+53$
- $y^2=6 x^6+61 x^5+42 x^4+11 x^3+69 x^2+27 x+52$
- $y^2=x^6+x^3+5$
- $y^2=78 x^6+38 x^5+27 x^4+43 x^3+67 x^2+4 x+66$
- $y^2=60 x^6+5 x^5+8 x^4+50 x^3+63 x^2+x+70$
- $y^2=59 x^6+54 x^5+66 x^4+25 x^3+44 x^2+68 x+77$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{3}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
The base change of $A$ to $\F_{79^{3}}$ is 1.493039.acas 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.