Properties

Label 3024.2.r.d.2017.1
Level $3024$
Weight $2$
Character 3024.2017
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1009,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,1,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2017.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2017
Dual form 3024.2.r.d.1009.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{5} +(0.500000 - 0.866025i) q^{7} +(1.50000 - 2.59808i) q^{11} +(3.00000 + 5.19615i) q^{13} -7.00000 q^{17} -1.00000 q^{19} +(2.00000 + 3.46410i) q^{23} +(0.500000 - 0.866025i) q^{25} +(-2.00000 + 3.46410i) q^{29} +(5.00000 + 8.66025i) q^{31} +2.00000 q^{35} -6.00000 q^{37} +(3.50000 + 6.06218i) q^{41} +(5.50000 - 9.52628i) q^{43} +(-4.00000 + 6.92820i) q^{47} +(-0.500000 - 0.866025i) q^{49} +4.00000 q^{53} +6.00000 q^{55} +(-4.50000 - 7.79423i) q^{59} +(-2.00000 + 3.46410i) q^{61} +(-6.00000 + 10.3923i) q^{65} +(4.50000 + 7.79423i) q^{67} +13.0000 q^{73} +(-1.50000 - 2.59808i) q^{77} +(5.00000 - 8.66025i) q^{79} +(-7.00000 - 12.1244i) q^{85} -10.0000 q^{89} +6.00000 q^{91} +(-1.00000 - 1.73205i) q^{95} +(-3.50000 + 6.06218i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + q^{7} + 3 q^{11} + 6 q^{13} - 14 q^{17} - 2 q^{19} + 4 q^{23} + q^{25} - 4 q^{29} + 10 q^{31} + 4 q^{35} - 12 q^{37} + 7 q^{41} + 11 q^{43} - 8 q^{47} - q^{49} + 8 q^{53} + 12 q^{55}+ \cdots - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 3.00000 + 5.19615i 0.832050 + 1.44115i 0.896410 + 0.443227i \(0.146166\pi\)
−0.0643593 + 0.997927i \(0.520500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i \(-0.0297381\pi\)
−0.578610 + 0.815604i \(0.696405\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 5.00000 + 8.66025i 0.898027 + 1.55543i 0.830014 + 0.557743i \(0.188333\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.50000 + 6.06218i 0.546608 + 0.946753i 0.998504 + 0.0546823i \(0.0174146\pi\)
−0.451896 + 0.892071i \(0.649252\pi\)
\(42\) 0 0
\(43\) 5.50000 9.52628i 0.838742 1.45274i −0.0522047 0.998636i \(-0.516625\pi\)
0.890947 0.454108i \(-0.150042\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 + 10.3923i −0.744208 + 1.28901i
\(66\) 0 0
\(67\) 4.50000 + 7.79423i 0.549762 + 0.952217i 0.998290 + 0.0584478i \(0.0186151\pi\)
−0.448528 + 0.893769i \(0.648052\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 13.0000 1.52153 0.760767 0.649025i \(-0.224823\pi\)
0.760767 + 0.649025i \(0.224823\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.50000 2.59808i −0.170941 0.296078i
\(78\) 0 0
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) −7.00000 12.1244i −0.759257 1.31507i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 1.73205i −0.102598 0.177705i
\(96\) 0 0
\(97\) −3.50000 + 6.06218i −0.355371 + 0.615521i −0.987181 0.159602i \(-0.948979\pi\)
0.631810 + 0.775123i \(0.282312\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 + 10.3923i −0.597022 + 1.03407i 0.396236 + 0.918149i \(0.370316\pi\)
−0.993258 + 0.115924i \(0.963017\pi\)
\(102\) 0 0
\(103\) 3.00000 + 5.19615i 0.295599 + 0.511992i 0.975124 0.221660i \(-0.0711475\pi\)
−0.679525 + 0.733652i \(0.737814\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) −4.00000 + 6.92820i −0.373002 + 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.50000 + 6.06218i −0.320844 + 0.555719i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) 0 0
\(133\) −0.500000 + 0.866025i −0.0433555 + 0.0750939i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.50000 4.33013i 0.213589 0.369948i −0.739246 0.673436i \(-0.764818\pi\)
0.952835 + 0.303488i \(0.0981512\pi\)
\(138\) 0 0
\(139\) 1.50000 + 2.59808i 0.127228 + 0.220366i 0.922602 0.385754i \(-0.126059\pi\)
−0.795373 + 0.606120i \(0.792725\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.0000 1.50524
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.00000 + 13.8564i 0.655386 + 1.13516i 0.981797 + 0.189933i \(0.0608272\pi\)
−0.326411 + 0.945228i \(0.605840\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.0000 + 17.3205i −0.803219 + 1.39122i
\(156\) 0 0
\(157\) 3.00000 + 5.19615i 0.239426 + 0.414698i 0.960550 0.278108i \(-0.0897074\pi\)
−0.721124 + 0.692806i \(0.756374\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.0000 + 19.0526i −0.836315 + 1.44854i 0.0566411 + 0.998395i \(0.481961\pi\)
−0.892956 + 0.450145i \(0.851372\pi\)
\(174\) 0 0
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 10.3923i −0.441129 0.764057i
\(186\) 0 0
\(187\) −10.5000 + 18.1865i −0.767836 + 1.32993i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000 17.3205i 0.723575 1.25327i −0.235983 0.971757i \(-0.575831\pi\)
0.959558 0.281511i \(-0.0908356\pi\)
\(192\) 0 0
\(193\) 7.50000 + 12.9904i 0.539862 + 0.935068i 0.998911 + 0.0466572i \(0.0148568\pi\)
−0.459049 + 0.888411i \(0.651810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.00000 + 3.46410i 0.140372 + 0.243132i
\(204\) 0 0
\(205\) −7.00000 + 12.1244i −0.488901 + 0.846802i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.50000 + 2.59808i −0.103757 + 0.179713i
\(210\) 0 0
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 22.0000 1.50039
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −21.0000 36.3731i −1.41261 2.44672i
\(222\) 0 0
\(223\) −6.00000 + 10.3923i −0.401790 + 0.695920i −0.993942 0.109906i \(-0.964945\pi\)
0.592152 + 0.805826i \(0.298278\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.50000 + 9.52628i −0.365048 + 0.632281i −0.988784 0.149354i \(-0.952281\pi\)
0.623736 + 0.781635i \(0.285614\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.00000 + 8.66025i 0.323423 + 0.560185i 0.981192 0.193035i \(-0.0618330\pi\)
−0.657769 + 0.753220i \(0.728500\pi\)
\(240\) 0 0
\(241\) 14.5000 25.1147i 0.934027 1.61778i 0.157667 0.987492i \(-0.449603\pi\)
0.776360 0.630290i \(-0.217064\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 1.73205i 0.0638877 0.110657i
\(246\) 0 0
\(247\) −3.00000 5.19615i −0.190885 0.330623i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.00000 −0.315597 −0.157799 0.987471i \(-0.550440\pi\)
−0.157799 + 0.987471i \(0.550440\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5000 23.3827i −0.842107 1.45857i −0.888110 0.459631i \(-0.847982\pi\)
0.0460033 0.998941i \(-0.485352\pi\)
\(258\) 0 0
\(259\) −3.00000 + 5.19615i −0.186411 + 0.322873i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.00000 5.19615i 0.184988 0.320408i −0.758585 0.651575i \(-0.774109\pi\)
0.943572 + 0.331166i \(0.107442\pi\)
\(264\) 0 0
\(265\) 4.00000 + 6.92820i 0.245718 + 0.425596i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −26.0000 −1.57939 −0.789694 0.613501i \(-0.789761\pi\)
−0.789694 + 0.613501i \(0.789761\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) −5.00000 + 8.66025i −0.300421 + 0.520344i −0.976231 0.216731i \(-0.930460\pi\)
0.675810 + 0.737075i \(0.263794\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 5.19615i 0.178965 0.309976i −0.762561 0.646916i \(-0.776058\pi\)
0.941526 + 0.336939i \(0.109392\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.00000 0.413197
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 9.00000 15.5885i 0.524000 0.907595i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 0 0
\(301\) −5.50000 9.52628i −0.317015 0.549086i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 17.0000 0.970241 0.485121 0.874447i \(-0.338776\pi\)
0.485121 + 0.874447i \(0.338776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.0000 + 25.9808i 0.850572 + 1.47323i 0.880693 + 0.473688i \(0.157077\pi\)
−0.0301210 + 0.999546i \(0.509589\pi\)
\(312\) 0 0
\(313\) 6.50000 11.2583i 0.367402 0.636358i −0.621757 0.783210i \(-0.713581\pi\)
0.989158 + 0.146852i \(0.0469141\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.00000 0.389490
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 + 6.92820i 0.220527 + 0.381964i
\(330\) 0 0
\(331\) 16.0000 27.7128i 0.879440 1.52323i 0.0274825 0.999622i \(-0.491251\pi\)
0.851957 0.523612i \(-0.175416\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.00000 + 15.5885i −0.491723 + 0.851688i
\(336\) 0 0
\(337\) 12.5000 + 21.6506i 0.680918 + 1.17939i 0.974701 + 0.223513i \(0.0717525\pi\)
−0.293783 + 0.955872i \(0.594914\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.0000 1.62459
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.50000 7.79423i −0.241573 0.418416i 0.719590 0.694399i \(-0.244330\pi\)
−0.961162 + 0.275983i \(0.910997\pi\)
\(348\) 0 0
\(349\) −13.0000 + 22.5167i −0.695874 + 1.20529i 0.274011 + 0.961727i \(0.411649\pi\)
−0.969885 + 0.243563i \(0.921684\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.5000 18.1865i 0.558859 0.967972i −0.438733 0.898617i \(-0.644573\pi\)
0.997592 0.0693543i \(-0.0220939\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.0000 + 22.5167i 0.680451 + 1.17858i
\(366\) 0 0
\(367\) 1.00000 1.73205i 0.0521996 0.0904123i −0.838745 0.544524i \(-0.816710\pi\)
0.890945 + 0.454112i \(0.150043\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00000 3.46410i 0.103835 0.179847i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −27.0000 −1.38690 −0.693448 0.720506i \(-0.743909\pi\)
−0.693448 + 0.720506i \(0.743909\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.00000 10.3923i −0.306586 0.531022i 0.671027 0.741433i \(-0.265853\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(384\) 0 0
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.00000 + 6.92820i −0.202808 + 0.351274i −0.949432 0.313972i \(-0.898340\pi\)
0.746624 + 0.665246i \(0.231673\pi\)
\(390\) 0 0
\(391\) −14.0000 24.2487i −0.708010 1.22631i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.0000 1.00631
\(396\) 0 0
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.5000 + 28.5788i 0.823971 + 1.42716i 0.902703 + 0.430263i \(0.141579\pi\)
−0.0787327 + 0.996896i \(0.525087\pi\)
\(402\) 0 0
\(403\) −30.0000 + 51.9615i −1.49441 + 2.58839i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.00000 + 15.5885i −0.446113 + 0.772691i
\(408\) 0 0
\(409\) −7.50000 12.9904i −0.370851 0.642333i 0.618846 0.785513i \(-0.287601\pi\)
−0.989697 + 0.143180i \(0.954267\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.00000 −0.442861
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.0000 17.3205i −0.488532 0.846162i 0.511381 0.859354i \(-0.329134\pi\)
−0.999913 + 0.0131919i \(0.995801\pi\)
\(420\) 0 0
\(421\) 10.0000 17.3205i 0.487370 0.844150i −0.512524 0.858673i \(-0.671290\pi\)
0.999895 + 0.0145228i \(0.00462290\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.50000 + 6.06218i −0.169775 + 0.294059i
\(426\) 0 0
\(427\) 2.00000 + 3.46410i 0.0967868 + 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −5.00000 −0.240285 −0.120142 0.992757i \(-0.538335\pi\)
−0.120142 + 0.992757i \(0.538335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.00000 3.46410i −0.0956730 0.165710i
\(438\) 0 0
\(439\) 12.0000 20.7846i 0.572729 0.991995i −0.423556 0.905870i \(-0.639218\pi\)
0.996284 0.0861252i \(-0.0274485\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.50000 + 9.52628i −0.261313 + 0.452607i −0.966591 0.256323i \(-0.917489\pi\)
0.705278 + 0.708931i \(0.250822\pi\)
\(444\) 0 0
\(445\) −10.0000 17.3205i −0.474045 0.821071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.0000 1.08544 0.542719 0.839915i \(-0.317395\pi\)
0.542719 + 0.839915i \(0.317395\pi\)
\(450\) 0 0
\(451\) 21.0000 0.988851
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 + 10.3923i 0.281284 + 0.487199i
\(456\) 0 0
\(457\) −12.5000 + 21.6506i −0.584725 + 1.01277i 0.410184 + 0.912003i \(0.365464\pi\)
−0.994910 + 0.100771i \(0.967869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0000 25.9808i 0.698620 1.21004i −0.270326 0.962769i \(-0.587131\pi\)
0.968945 0.247276i \(-0.0795353\pi\)
\(462\) 0 0
\(463\) −8.00000 13.8564i −0.371792 0.643962i 0.618050 0.786139i \(-0.287923\pi\)
−0.989841 + 0.142177i \(0.954590\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.0000 −0.971764 −0.485882 0.874024i \(-0.661502\pi\)
−0.485882 + 0.874024i \(0.661502\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.5000 28.5788i −0.758671 1.31406i
\(474\) 0 0
\(475\) −0.500000 + 0.866025i −0.0229416 + 0.0397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0000 17.3205i 0.456912 0.791394i −0.541884 0.840453i \(-0.682289\pi\)
0.998796 + 0.0490589i \(0.0156222\pi\)
\(480\) 0 0
\(481\) −18.0000 31.1769i −0.820729 1.42154i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.5000 18.1865i −0.473858 0.820747i 0.525694 0.850674i \(-0.323806\pi\)
−0.999552 + 0.0299272i \(0.990472\pi\)
\(492\) 0 0
\(493\) 14.0000 24.2487i 0.630528 1.09211i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.50000 14.7224i −0.380512 0.659067i 0.610623 0.791921i \(-0.290919\pi\)
−0.991136 + 0.132855i \(0.957586\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.0000 0.980932 0.490466 0.871460i \(-0.336827\pi\)
0.490466 + 0.871460i \(0.336827\pi\)
\(504\) 0 0
\(505\) −24.0000 −1.06799
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −21.0000 36.3731i −0.930809 1.61221i −0.781943 0.623350i \(-0.785771\pi\)
−0.148866 0.988857i \(-0.547562\pi\)
\(510\) 0 0
\(511\) 6.50000 11.2583i 0.287543 0.498039i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.00000 + 10.3923i −0.264392 + 0.457940i
\(516\) 0 0
\(517\) 12.0000 + 20.7846i 0.527759 + 0.914106i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −35.0000 60.6218i −1.52462 2.64073i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.0000 + 36.3731i −0.909611 + 1.57549i
\(534\) 0 0
\(535\) −9.00000 15.5885i −0.389104 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) −32.0000 −1.37579 −0.687894 0.725811i \(-0.741464\pi\)
−0.687894 + 0.725811i \(0.741464\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 3.46410i −0.0856706 0.148386i
\(546\) 0 0
\(547\) −8.50000 + 14.7224i −0.363434 + 0.629486i −0.988524 0.151067i \(-0.951729\pi\)
0.625090 + 0.780553i \(0.285062\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.00000 3.46410i 0.0852029 0.147576i
\(552\) 0 0
\(553\) −5.00000 8.66025i −0.212622 0.368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.00000 −0.169485 −0.0847427 0.996403i \(-0.527007\pi\)
−0.0847427 + 0.996403i \(0.527007\pi\)
\(558\) 0 0
\(559\) 66.0000 2.79150
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.50000 + 14.7224i 0.358232 + 0.620477i 0.987666 0.156578i \(-0.0500463\pi\)
−0.629433 + 0.777055i \(0.716713\pi\)
\(564\) 0 0
\(565\) −6.00000 + 10.3923i −0.252422 + 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.50000 + 12.9904i −0.314416 + 0.544585i −0.979313 0.202350i \(-0.935142\pi\)
0.664897 + 0.746935i \(0.268475\pi\)
\(570\) 0 0
\(571\) −18.5000 32.0429i −0.774201 1.34096i −0.935243 0.354008i \(-0.884819\pi\)
0.161042 0.986948i \(-0.448515\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −15.0000 −0.624458 −0.312229 0.950007i \(-0.601076\pi\)
−0.312229 + 0.950007i \(0.601076\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 10.3923i 0.248495 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.5000 19.9186i 0.474656 0.822128i −0.524923 0.851150i \(-0.675906\pi\)
0.999579 + 0.0290218i \(0.00923921\pi\)
\(588\) 0 0
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −14.0000 −0.573944
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 13.8564i −0.326871 0.566157i 0.655018 0.755613i \(-0.272661\pi\)
−0.981889 + 0.189456i \(0.939328\pi\)
\(600\) 0 0
\(601\) 11.5000 19.9186i 0.469095 0.812496i −0.530281 0.847822i \(-0.677914\pi\)
0.999376 + 0.0353259i \(0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.00000 + 3.46410i −0.0813116 + 0.140836i
\(606\) 0 0
\(607\) −4.00000 6.92820i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.50000 7.79423i −0.181163 0.313784i 0.761114 0.648618i \(-0.224653\pi\)
−0.942277 + 0.334835i \(0.891320\pi\)
\(618\) 0 0
\(619\) 10.5000 18.1865i 0.422031 0.730978i −0.574107 0.818780i \(-0.694651\pi\)
0.996138 + 0.0878015i \(0.0279841\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.00000 + 8.66025i −0.200321 + 0.346966i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 42.0000 1.67465
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.00000 + 6.92820i 0.158735 + 0.274937i
\(636\) 0 0
\(637\) 3.00000 5.19615i 0.118864 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.5000 21.6506i 0.493720 0.855149i −0.506254 0.862385i \(-0.668970\pi\)
0.999974 + 0.00723604i \(0.00230332\pi\)
\(642\) 0 0
\(643\) 12.5000 + 21.6506i 0.492952 + 0.853818i 0.999967 0.00811944i \(-0.00258453\pi\)
−0.507015 + 0.861937i \(0.669251\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −27.0000 −1.05984
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.0000 19.0526i −0.430463 0.745584i 0.566450 0.824096i \(-0.308316\pi\)
−0.996913 + 0.0785119i \(0.974983\pi\)
\(654\) 0 0
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 34.6410i 0.779089 1.34942i −0.153378 0.988168i \(-0.549015\pi\)
0.932467 0.361255i \(-0.117652\pi\)
\(660\) 0 0
\(661\) 14.0000 + 24.2487i 0.544537 + 0.943166i 0.998636 + 0.0522143i \(0.0166279\pi\)
−0.454099 + 0.890951i \(0.650039\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 + 10.3923i 0.231627 + 0.401190i
\(672\) 0 0
\(673\) 25.0000 43.3013i 0.963679 1.66914i 0.250557 0.968102i \(-0.419386\pi\)
0.713123 0.701039i \(-0.247280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 0 0
\(679\) 3.50000 + 6.06218i 0.134318 + 0.232645i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.0000 1.03313 0.516563 0.856249i \(-0.327211\pi\)
0.516563 + 0.856249i \(0.327211\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −8.00000 + 13.8564i −0.304334 + 0.527123i −0.977113 0.212721i \(-0.931767\pi\)
0.672779 + 0.739844i \(0.265101\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.00000 + 5.19615i −0.113796 + 0.197101i
\(696\) 0 0
\(697\) −24.5000 42.4352i −0.928004 1.60735i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.0000 −0.604312 −0.302156 0.953259i \(-0.597706\pi\)
−0.302156 + 0.953259i \(0.597706\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000 + 10.3923i 0.225653 + 0.390843i
\(708\) 0 0
\(709\) −14.0000 + 24.2487i −0.525781 + 0.910679i 0.473768 + 0.880650i \(0.342894\pi\)
−0.999549 + 0.0300298i \(0.990440\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.0000 + 34.6410i −0.749006 + 1.29732i
\(714\) 0 0
\(715\) 18.0000 + 31.1769i 0.673162 + 1.16595i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 + 3.46410i 0.0742781 + 0.128654i
\(726\) 0 0
\(727\) 13.0000 22.5167i 0.482143 0.835097i −0.517647 0.855595i \(-0.673192\pi\)
0.999790 + 0.0204978i \(0.00652512\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −38.5000 + 66.6840i −1.42397 + 2.46640i
\(732\) 0 0
\(733\) −11.0000 19.0526i −0.406294 0.703722i 0.588177 0.808732i \(-0.299846\pi\)
−0.994471 + 0.105010i \(0.966513\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27.0000 0.994558
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 1.73205i −0.0366864 0.0635428i 0.847099 0.531435i \(-0.178347\pi\)
−0.883786 + 0.467892i \(0.845014\pi\)
\(744\) 0 0
\(745\) −16.0000 + 27.7128i −0.586195 + 1.01532i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.50000 + 7.79423i −0.164426 + 0.284795i
\(750\) 0 0
\(751\) −17.0000 29.4449i −0.620339 1.07446i −0.989423 0.145062i \(-0.953662\pi\)
0.369084 0.929396i \(-0.379672\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 5.19615i −0.108750 0.188360i 0.806514 0.591215i \(-0.201351\pi\)
−0.915264 + 0.402854i \(0.868018\pi\)
\(762\) 0 0
\(763\) −1.00000 + 1.73205i −0.0362024 + 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.0000 46.7654i 0.974913 1.68860i
\(768\) 0 0
\(769\) 13.0000 + 22.5167i 0.468792 + 0.811972i 0.999364 0.0356685i \(-0.0113561\pi\)
−0.530572 + 0.847640i \(0.678023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.00000 −0.143870 −0.0719350 0.997409i \(-0.522917\pi\)
−0.0719350 + 0.997409i \(0.522917\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.50000 6.06218i −0.125401 0.217200i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.00000 + 10.3923i −0.214149 + 0.370917i
\(786\) 0 0
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −24.0000 −0.852265
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\) 28.0000 48.4974i 0.990569 1.71572i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 19.5000 33.7750i 0.688140 1.19189i
\(804\) 0 0
\(805\) 4.00000 + 6.92820i 0.140981 + 0.244187i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.0000 −1.58212 −0.791058 0.611741i \(-0.790469\pi\)
−0.791058 + 0.611741i \(0.790469\pi\)
\(810\) 0 0
\(811\) −15.0000 −0.526721 −0.263361 0.964697i \(-0.584831\pi\)
−0.263361 + 0.964697i \(0.584831\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.00000 6.92820i −0.140114 0.242684i
\(816\) 0 0
\(817\) −5.50000 + 9.52628i −0.192421 + 0.333282i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.00000 + 15.5885i −0.314102 + 0.544041i −0.979246 0.202674i \(-0.935037\pi\)
0.665144 + 0.746715i \(0.268370\pi\)
\(822\) 0 0
\(823\) −23.0000 39.8372i −0.801730 1.38864i −0.918477 0.395475i \(-0.870580\pi\)
0.116747 0.993162i \(-0.462753\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −28.0000 −0.972480 −0.486240 0.873825i \(-0.661632\pi\)
−0.486240 + 0.873825i \(0.661632\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.50000 + 6.06218i 0.121268 + 0.210042i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.0000 31.1769i 0.621429 1.07635i −0.367791 0.929909i \(-0.619886\pi\)
0.989220 0.146438i \(-0.0467809\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −46.0000 −1.58245
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) 0 0
\(853\) 22.0000 38.1051i 0.753266 1.30469i −0.192966 0.981205i \(-0.561811\pi\)
0.946232 0.323489i \(-0.104856\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.0000 25.9808i 0.512390 0.887486i −0.487507 0.873119i \(-0.662093\pi\)
0.999897 0.0143666i \(-0.00457319\pi\)
\(858\) 0 0
\(859\) −5.50000 9.52628i −0.187658 0.325032i 0.756811 0.653633i \(-0.226756\pi\)
−0.944469 + 0.328601i \(0.893423\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) 0 0
\(865\) −44.0000 −1.49604
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.0000 25.9808i −0.508840 0.881337i
\(870\) 0 0
\(871\) −27.0000 + 46.7654i −0.914860 + 1.58458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.00000 10.3923i 0.202837 0.351324i
\(876\) 0 0
\(877\) −16.0000 27.7128i −0.540282 0.935795i −0.998888 0.0471555i \(-0.984984\pi\)
0.458606 0.888640i \(-0.348349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.0000 1.28025 0.640126 0.768270i \(-0.278882\pi\)
0.640126 + 0.768270i \(0.278882\pi\)
\(882\) 0 0
\(883\) −1.00000 −0.0336527 −0.0168263 0.999858i \(-0.505356\pi\)
−0.0168263 + 0.999858i \(0.505356\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.00000 15.5885i −0.302190 0.523409i 0.674441 0.738328i \(-0.264385\pi\)
−0.976632 + 0.214919i \(0.931051\pi\)
\(888\) 0 0
\(889\) 2.00000 3.46410i 0.0670778 0.116182i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.00000 6.92820i 0.133855 0.231843i
\(894\) 0 0
\(895\) −16.0000 27.7128i −0.534821 0.926337i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −40.0000 −1.33407
\(900\) 0 0
\(901\) −28.0000 −0.932815
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.00000 + 13.8564i 0.265929 + 0.460603i
\(906\) 0 0
\(907\) −27.5000 + 47.6314i −0.913123 + 1.58157i −0.103495 + 0.994630i \(0.533003\pi\)
−0.809627 + 0.586945i \(0.800331\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.0000 27.7128i 0.530104 0.918166i −0.469280 0.883050i \(-0.655486\pi\)
0.999383 0.0351168i \(-0.0111803\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.00000 + 5.19615i −0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.0000 39.8372i 0.754606 1.30702i −0.190965 0.981597i \(-0.561162\pi\)
0.945570 0.325418i \(-0.105505\pi\)
\(930\) 0 0
\(931\) 0.500000 + 0.866025i 0.0163868 + 0.0283828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −42.0000 −1.37355
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 10.3923i −0.195594 0.338779i 0.751501 0.659732i \(-0.229330\pi\)
−0.947095 + 0.320953i \(0.895997\pi\)
\(942\) 0 0
\(943\) −14.0000 + 24.2487i −0.455903 + 0.789647i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.50000 14.7224i 0.276213 0.478415i −0.694228 0.719756i \(-0.744254\pi\)
0.970440 + 0.241341i \(0.0775872\pi\)
\(948\) 0 0
\(949\) 39.0000 + 67.5500i 1.26599 + 2.19277i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 35.0000 1.13376 0.566881 0.823800i \(-0.308150\pi\)
0.566881 + 0.823800i \(0.308150\pi\)
\(954\) 0 0
\(955\) 40.0000 1.29437
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.50000 4.33013i −0.0807292 0.139827i
\(960\) 0 0
\(961\) −34.5000 + 59.7558i −1.11290 + 1.92760i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15.0000 + 25.9808i −0.482867 + 0.836350i
\(966\) 0 0
\(967\) 3.00000 + 5.19615i 0.0964735 + 0.167097i 0.910223 0.414119i \(-0.135910\pi\)
−0.813749 + 0.581216i \(0.802577\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.00000 0.128366 0.0641831 0.997938i \(-0.479556\pi\)
0.0641831 + 0.997938i \(0.479556\pi\)
\(972\) 0 0
\(973\) 3.00000 0.0961756
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.5000 + 28.5788i 0.527882 + 0.914318i 0.999472 + 0.0325001i \(0.0103469\pi\)
−0.471590 + 0.881818i \(0.656320\pi\)
\(978\) 0 0
\(979\) −15.0000 + 25.9808i −0.479402 + 0.830349i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.0000 31.1769i 0.574111 0.994389i −0.422027 0.906583i \(-0.638681\pi\)
0.996138 0.0878058i \(-0.0279855\pi\)
\(984\) 0 0
\(985\) 6.00000 + 10.3923i 0.191176 + 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 44.0000 1.39912
\(990\) 0 0
\(991\) −36.0000 −1.14358 −0.571789 0.820401i \(-0.693750\pi\)
−0.571789 + 0.820401i \(0.693750\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.0000 24.2487i −0.443830 0.768736i
\(996\) 0 0
\(997\) 19.0000 32.9090i 0.601736 1.04224i −0.390822 0.920466i \(-0.627809\pi\)
0.992558 0.121771i \(-0.0388574\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.r.d.2017.1 2
3.2 odd 2 1008.2.r.b.673.1 2
4.3 odd 2 1512.2.r.b.505.1 2
9.2 odd 6 9072.2.a.s.1.1 1
9.4 even 3 inner 3024.2.r.d.1009.1 2
9.5 odd 6 1008.2.r.b.337.1 2
9.7 even 3 9072.2.a.d.1.1 1
12.11 even 2 504.2.r.b.169.1 2
36.7 odd 6 4536.2.a.c.1.1 1
36.11 even 6 4536.2.a.h.1.1 1
36.23 even 6 504.2.r.b.337.1 yes 2
36.31 odd 6 1512.2.r.b.1009.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.r.b.169.1 2 12.11 even 2
504.2.r.b.337.1 yes 2 36.23 even 6
1008.2.r.b.337.1 2 9.5 odd 6
1008.2.r.b.673.1 2 3.2 odd 2
1512.2.r.b.505.1 2 4.3 odd 2
1512.2.r.b.1009.1 2 36.31 odd 6
3024.2.r.d.1009.1 2 9.4 even 3 inner
3024.2.r.d.2017.1 2 1.1 even 1 trivial
4536.2.a.c.1.1 1 36.7 odd 6
4536.2.a.h.1.1 1 36.11 even 6
9072.2.a.d.1.1 1 9.7 even 3
9072.2.a.s.1.1 1 9.2 odd 6