Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 7 x + 8 x^{2} - 287 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.0174146042242$, $\pm0.649252062442$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-115})\) |
Galois group: | $C_2^2$ |
Jacobians: | $10$ |
Isomorphism classes: | 16 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1396$ | $2769664$ | $4679107216$ | $7978504612864$ | $13422042056685076$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $35$ | $1649$ | $67886$ | $2823489$ | $115850875$ | $4749843278$ | $194753578915$ | $7984924744129$ | $327381870616766$ | $13422659106816929$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=25 x^6+23 x^5+19 x^4+9 x^3+14 x^2+31 x+22$
- $y^2=18 x^6+39 x^5+31 x^4+17 x^3+6 x^2+39 x+31$
- $y^2=23 x^6+7 x^5+35 x^4+36 x^3+5 x^2+25 x+4$
- $y^2=2 x^6+9 x^5+12 x^4+28 x^3+35 x^2+37 x+9$
- $y^2=x^6+29 x^5+39 x^4+30 x^3+14 x^2+38 x+24$
- $y^2=19 x^6+4 x^5+3 x^4+35 x^3+2 x^2+17 x+11$
- $y^2=22 x^6+34 x^5+31 x^4+14 x^3+38 x^2+39 x+1$
- $y^2=34 x^5+37 x^4+16 x^3+30 x^2+8 x+5$
- $y^2=8 x^6+x^5+18 x^4+3 x^2+2 x+6$
- $y^2=35 x^6+17 x^5+29 x^4+16 x^3+2 x^2+15 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{3}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-115})\). |
The base change of $A$ to $\F_{41^{3}}$ is 1.68921.aty 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$ |
Base change
This is a primitive isogeny class.