Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 6 x + 37 x^{2} )^{2}$ |
| $1 + 12 x + 110 x^{2} + 444 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.664171811597$, $\pm0.664171811597$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 11$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1936$ | $1982464$ | $2520441616$ | $3517335207936$ | $4809816970888336$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $1446$ | $49754$ | $1876750$ | $69361730$ | $2565524022$ | $94932433898$ | $3512483601694$ | $129961694308178$ | $4808584491871686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=17 x^6+34 x^4+34 x^2+17$
- $y^2=22 x^6+24 x^5+18 x^3+34 x^2+x+12$
- $y^2=29 x^6+15 x^5+34 x^4+28 x^3+34 x^2+15 x+29$
- $y^2=21 x^6+10 x^5+27 x^4+12 x^3+x^2+27 x+32$
- $y^2=30 x^6+15 x^5+35 x^4+10 x^3+35 x^2+15 x+30$
- $y^2=7 x^6+10 x^5+10 x^4+26 x^3+28 x^2+34 x+3$
- $y^2=8 x^6+5 x^4+5 x^2+8$
- $y^2=21 x^6+29 x^5+22 x^4+5 x^3+22 x^2+29 x+21$
- $y^2=11 x^6+7 x^5+8 x^4+22 x^3+5 x^2+27 x+31$
- $y^2=27 x^6+29 x^4+29 x^2+27$
- $y^2=28 x^6+13 x^5+26 x^4+36 x^3+26 x^2+13 x+28$
- $y^2=32 x^6+9 x^5+15 x^4+22 x^3+2 x^2+28 x+7$
- $y^2=22 x^6+32 x^5+35 x^4+29 x^3+35 x^2+32 x+22$
- $y^2=12 x^6+26 x^5+13 x^4+25 x^3+19 x^2+7 x+4$
- $y^2=10 x^6+33 x^5+33 x^4+11 x^3+33 x^2+33 x+10$
- $y^2=11 x^6+4 x^5+32 x^4+27 x^3+32 x^2+4 x+11$
- $y^2=21 x^6+7 x^4+8 x^3+7 x^2+21$
- $y^2=20 x^6+20 x^5+12 x^4+18 x^3+12 x^2+20 x+20$
- $y^2=20 x^6+27 x^4+27 x^2+20$
- $y^2=9 x^6+21 x^5+36 x^4+35 x^3+8 x^2+23 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.