Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - 45 x^{2} + 244 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.249095665427$, $\pm0.915762332094$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{19})\) |
Galois group: | $C_2^2$ |
Jacobians: | $32$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3925$ | $13458825$ | $51824522500$ | $191759844670425$ | $713390147149373125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $3616$ | $228318$ | $13849636$ | $844652226$ | $51520389838$ | $3142739393706$ | $191707299700036$ | $11694145779249558$ | $713342913101183776$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=58 x^6+43 x^5+30 x^4+25 x^3+32 x^2+7 x+60$
- $y^2=24 x^6+51 x^5+20 x^4+46 x^3+17 x^2+17 x+9$
- $y^2=44 x^6+7 x^5+4 x^4+23 x^3+37 x^2+17 x+22$
- $y^2=2 x^6+47 x^5+49 x^4+35 x^3+20 x^2+15 x+24$
- $y^2=2 x^6+2 x^3+30$
- $y^2=x^6+44 x^5+6 x^4+38 x^3+44 x^2+23 x+10$
- $y^2=24 x^6+5 x^5+21 x^4+12 x^3+37 x^2+42 x+43$
- $y^2=13 x^6+8 x^5+41 x^4+40 x^3+56 x^2+45 x+3$
- $y^2=7 x^6+52 x^5+23 x^4+44 x^3+38 x^2+22 x+59$
- $y^2=15 x^6+20 x^5+11 x^4+38 x^3+30 x^2+30 x+27$
- $y^2=30 x^6+36 x^5+12 x^4+2 x^3+46 x^2+48 x+28$
- $y^2=20 x^6+31 x^5+13 x^4+39 x^3+13 x^2+45 x+20$
- $y^2=49 x^6+29 x^5+44 x^4+47 x^3+7 x^2+52 x+26$
- $y^2=55 x^6+12 x^5+19 x^4+x^3+17 x^2+9 x+41$
- $y^2=25 x^6+21 x^5+32 x^4+59 x^3+53 x^2+3 x+50$
- $y^2=17 x^6+32 x^5+26 x^4+47 x^3+37 x^2+35 x+27$
- $y^2=40 x^6+38 x^4+44 x^3+43 x^2+45 x+41$
- $y^2=2 x^6+47 x^5+47 x^4+35 x^3+7 x^2+x+47$
- $y^2=34 x^6+49 x^5+47 x^4+20 x^3+39 x^2+26 x+25$
- $y^2=5 x^6+54 x^5+43 x^4+9 x^3+47 x^2+37 x+27$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{19})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.zs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
Base change
This is a primitive isogeny class.