Properties

Label 2.67.aj_o
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 14 x^{2} - 603 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.0186151165355$, $\pm0.648051550131$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-187})\)
Galois group:  $C_2^2$
Jacobians:  $14$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3892$ $19911472$ $89810499856$ $405943383190464$ $1822815068728494652$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $59$ $4437$ $298604$ $20144953$ $1350108269$ $90457252422$ $6060707649671$ $406067675310961$ $27206533825815188$ $1822837802135063157$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67^{3}}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-187})\).
Endomorphism algebra over $\overline{\F}_{67}$
The base change of $A$ to $\F_{67^{3}}$ is 1.300763.abpo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.j_o$2$(not in LMFDB)
2.67.s_ih$3$(not in LMFDB)
2.67.as_ih$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.j_o$2$(not in LMFDB)
2.67.s_ih$3$(not in LMFDB)
2.67.as_ih$6$(not in LMFDB)
2.67.a_cb$6$(not in LMFDB)
2.67.a_acb$12$(not in LMFDB)