Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 9 x + 14 x^{2} - 603 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.0186151165355$, $\pm0.648051550131$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-187})\) |
Galois group: | $C_2^2$ |
Jacobians: | $14$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3892$ | $19911472$ | $89810499856$ | $405943383190464$ | $1822815068728494652$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $59$ | $4437$ | $298604$ | $20144953$ | $1350108269$ | $90457252422$ | $6060707649671$ | $406067675310961$ | $27206533825815188$ | $1822837802135063157$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=15 x^6+18 x^5+31 x^4+29 x^3+58 x^2+60 x+25$
- $y^2=13 x^6+47 x^5+11 x^4+58 x^3+31 x^2+4 x+51$
- $y^2=11 x^6+24 x^5+25 x^4+22 x^3+61 x^2+54 x+5$
- $y^2=21 x^6+66 x^5+46 x^4+37 x^3+3 x^2+7 x+51$
- $y^2=18 x^6+29 x^5+38 x^4+33 x^3+7 x^2+13 x+50$
- $y^2=5 x^6+43 x^5+21 x^4+44 x^3+45 x^2+25 x+59$
- $y^2=26 x^6+12 x^5+30 x^4+16 x^3+21 x^2+20 x+58$
- $y^2=61 x^6+26 x^5+41 x^4+49 x^3+2 x^2+8 x+27$
- $y^2=11 x^6+64 x^5+3 x^4+43 x^3+54 x^2+36 x+54$
- $y^2=59 x^6+46 x^5+6 x^4+48 x^3+17 x^2+3 x+52$
- $y^2=13 x^6+35 x^5+53 x^4+31 x^3+4 x^2+16 x+9$
- $y^2=51 x^6+65 x^5+55 x^4+62 x^3+6 x^2+41 x+9$
- $y^2=50 x^6+8 x^5+52 x^4+45 x^3+12 x^2+65 x+66$
- $y^2=65 x^6+7 x^5+14 x^4+34 x^3+34 x^2+25 x+22$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-187})\). |
The base change of $A$ to $\F_{67^{3}}$ is 1.300763.abpo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.