Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 23 x^{2} - 78 x^{3} + 169 x^{4}$ |
Frobenius angles: | $\pm0.146166291522$, $\pm0.520500375144$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $12$ |
Isomorphism classes: | 8 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $109$ | $30193$ | $4752400$ | $808961049$ | $138302871229$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $8$ | $180$ | $2162$ | $28324$ | $372488$ | $4834950$ | $62757416$ | $815730244$ | $10604724986$ | $137859174900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=x^6+12 x^5+9 x^4+4 x^2+8 x+11$
- $y^2=5 x^6+12 x^5+9 x^4+8 x^3+8 x^2+5 x+7$
- $y^2=9 x^6+x^5+3 x^4+9 x^3+x^2+4 x+6$
- $y^2=3 x^6+11 x^4+9 x^3+5 x^2+7 x+12$
- $y^2=4 x^6+x^5+2 x^4+3 x^3+10 x^2+8$
- $y^2=7 x^6+4 x^5+9 x^4+8 x^3+12 x^2+9 x+1$
- $y^2=7 x^6+x^5+12 x^3+6 x^2+7 x+12$
- $y^2=6 x^6+x^5+7 x^4+7 x^2+3 x+4$
- $y^2=5 x^6+11 x^5+3 x^4+4 x^3+2 x^2+x+11$
- $y^2=6 x^6+11 x^5+12 x^4+x^3+10 x^2+x+5$
- $y^2=5 x^6+12 x^5+3 x^4+8 x^3+6 x^2+10 x+5$
- $y^2=5 x^6+3 x^5+11 x^4+12 x^3+6 x^2+5 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13^{3}}$.
Endomorphism algebra over $\F_{13}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{13^{3}}$ is 1.2197.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.