Properties

Label 2.17.o_df
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $( 1 + 7 x + 17 x^{2} )^{2}$
  $1 + 14 x + 83 x^{2} + 238 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.822719357511$, $\pm0.822719357511$
Angle rank:  $1$ (numerical)
Jacobians:  $1$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $625$ $75625$ $24010000$ $7035015625$ $2009660640625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $260$ $4886$ $84228$ $1415392$ $24156830$ $410279776$ $6975842308$ $118588283702$ $2015989607300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.h 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ao_df$2$(not in LMFDB)
2.17.a_ap$2$(not in LMFDB)
2.17.ah_bg$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ao_df$2$(not in LMFDB)
2.17.a_ap$2$(not in LMFDB)
2.17.ah_bg$3$(not in LMFDB)
2.17.a_p$4$(not in LMFDB)
2.17.h_bg$6$(not in LMFDB)