Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 7 x - 48 x^{2} + 679 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.282312186075$, $\pm0.948978852742$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{113})\) |
Galois group: | $C_2^2$ |
Jacobians: | $138$ |
Isomorphism classes: | 234 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10048$ | $87176448$ | $836068839424$ | $7837628894843904$ | $73743956433617819968$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $105$ | $9265$ | $916062$ | $88531489$ | $8587520025$ | $832969916350$ | $80798274350745$ | $7837433422189249$ | $760231059100483614$ | $73742412704634319825$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):
- $y^2=74 x^6+37 x^5+79 x^4+84 x^3+81 x^2+62 x+10$
- $y^2=2 x^6+17 x^5+54 x^4+78 x^3+62 x+20$
- $y^2=70 x^6+34 x^5+5 x^4+33 x^3+9 x^2+71 x+76$
- $y^2=40 x^6+85 x^5+37 x^4+39 x^3+52 x^2+79 x+87$
- $y^2=70 x^6+36 x^5+93 x^4+28 x^3+92 x^2+47 x+30$
- $y^2=3 x^6+x^5+94 x^4+84 x^3+17 x^2+47 x+17$
- $y^2=76 x^6+21 x^5+38 x^4+73 x^3+6 x^2+13 x+64$
- $y^2=21 x^6+42 x^5+14 x^4+85 x^3+24 x^2+35 x+10$
- $y^2=24 x^6+71 x^5+10 x^4+69 x^3+70 x^2+15 x+11$
- $y^2=54 x^6+35 x^5+32 x^4+20 x^3+90 x^2+87 x$
- $y^2=30 x^6+19 x^5+46 x^4+74 x^3+38 x^2+68 x+71$
- $y^2=48 x^6+89 x^5+34 x^4+16 x^3+10 x^2+84 x+54$
- $y^2=11 x^6+79 x^5+59 x^4+69 x^3+50 x^2+31 x+59$
- $y^2=21 x^6+45 x^5+2 x^4+17 x^3+47 x^2+5 x+43$
- $y^2=71 x^6+82 x^5+19 x^4+69 x^3+7 x^2+x+36$
- $y^2=90 x^6+57 x^5+55 x^4+22 x^3+14 x^2+79 x+66$
- $y^2=5 x^6+5 x^3+15$
- $y^2=16 x^6+34 x^5+20 x^4+80 x^3+61 x^2+78 x+12$
- $y^2=30 x^6+15 x^5+86 x^4+70 x^3+23 x^2+87 x+54$
- $y^2=79 x^6+53 x^5+33 x^4+73 x^3+69 x^2+x+53$
- and 118 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{3}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{113})\). |
The base change of $A$ to $\F_{97^{3}}$ is 1.912673.cne 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-339}) \)$)$ |
Base change
This is a primitive isogeny class.