-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10048, 'abvar_counts': [10048, 87176448, 836068839424, 7837628894843904, 73743956433617819968, 693840621269524429209600, 6528361956332056433261522752, 61425363996758825852233934721024, 577951262882041995163073356676141056, 5437943430384042857346696603628676713728], 'abvar_counts_str': '10048 87176448 836068839424 7837628894843904 73743956433617819968 693840621269524429209600 6528361956332056433261522752 61425363996758825852233934721024 577951262882041995163073356676141056 5437943430384042857346696603628676713728 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.282312186075254, 0.948978852741921], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 105, 'curve_counts': [105, 9265, 916062, 88531489, 8587520025, 832969916350, 80798274350745, 7837433422189249, 760231059100483614, 73742412704634319825], 'curve_counts_str': '105 9265 916062 88531489 8587520025 832969916350 80798274350745 7837433422189249 760231059100483614 73742412704634319825 ', 'curves': ['y^2=74*x^6+37*x^5+79*x^4+84*x^3+81*x^2+62*x+10', 'y^2=2*x^6+17*x^5+54*x^4+78*x^3+62*x+20', 'y^2=70*x^6+34*x^5+5*x^4+33*x^3+9*x^2+71*x+76', 'y^2=40*x^6+85*x^5+37*x^4+39*x^3+52*x^2+79*x+87', 'y^2=70*x^6+36*x^5+93*x^4+28*x^3+92*x^2+47*x+30', 'y^2=3*x^6+x^5+94*x^4+84*x^3+17*x^2+47*x+17', 'y^2=76*x^6+21*x^5+38*x^4+73*x^3+6*x^2+13*x+64', 'y^2=21*x^6+42*x^5+14*x^4+85*x^3+24*x^2+35*x+10', 'y^2=24*x^6+71*x^5+10*x^4+69*x^3+70*x^2+15*x+11', 'y^2=54*x^6+35*x^5+32*x^4+20*x^3+90*x^2+87*x', 'y^2=30*x^6+19*x^5+46*x^4+74*x^3+38*x^2+68*x+71', 'y^2=48*x^6+89*x^5+34*x^4+16*x^3+10*x^2+84*x+54', 'y^2=11*x^6+79*x^5+59*x^4+69*x^3+50*x^2+31*x+59', 'y^2=21*x^6+45*x^5+2*x^4+17*x^3+47*x^2+5*x+43', 'y^2=71*x^6+82*x^5+19*x^4+69*x^3+7*x^2+x+36', 'y^2=90*x^6+57*x^5+55*x^4+22*x^3+14*x^2+79*x+66', 'y^2=5*x^6+5*x^3+15', 'y^2=16*x^6+34*x^5+20*x^4+80*x^3+61*x^2+78*x+12', 'y^2=30*x^6+15*x^5+86*x^4+70*x^3+23*x^2+87*x+54', 'y^2=79*x^6+53*x^5+33*x^4+73*x^3+69*x^2+x+53', 'y^2=79*x^6+54*x^5+72*x^4+61*x^3+71*x^2+80*x+75', 'y^2=91*x^6+45*x^5+59*x^4+52*x^3+32*x^2+73*x+4', 'y^2=33*x^6+89*x^5+12*x^4+89*x^3+16*x^2+60*x+48', 'y^2=24*x^6+29*x^5+6*x^4+6*x^3+82*x^2+86*x+35', 'y^2=65*x^6+12*x^5+10*x^4+8*x^3+10*x^2+21*x+69', 'y^2=86*x^6+90*x^5+82*x^4+69*x^3+x^2+29*x+21', 'y^2=75*x^6+73*x^5+52*x^4+33*x^3+4*x^2+79*x+29', 'y^2=7*x^6+21*x^5+47*x^4+69*x^3+18*x^2+60*x+11', 'y^2=52*x^6+20*x^5+11*x^4+44*x^3+22*x^2+58*x+18', 'y^2=16*x^6+16*x^5+68*x^4+11*x^3+32*x^2+87*x+12', 'y^2=43*x^6+51*x^5+15*x^4+87*x^3+21*x^2+89*x+9', 'y^2=12*x^6+13*x^5+2*x^4+48*x^3+96*x^2+25*x+41', 'y^2=94*x^6+63*x^5+85*x^4+95*x^3+89*x^2+34*x+1', 'y^2=19*x^6+72*x^5+17*x^4+9*x^3+59*x^2+23*x+12', 'y^2=89*x^6+42*x^5+45*x^4+29*x^3+41*x^2+63*x+84', 'y^2=22*x^6+71*x^5+63*x^4+90*x^3+31*x^2+33*x+87', 'y^2=67*x^6+92*x^5+67*x^4+21*x^3+5*x^2+19*x+59', 'y^2=67*x^6+10*x^5+47*x^4+36*x^3+3*x^2+47*x+82', 'y^2=5*x^6+44*x^5+41*x^3+45*x^2+93*x+63', 'y^2=67*x^6+51*x^5+12*x^4+55*x^3+17*x^2+21*x+28', 'y^2=50*x^6+8*x^5+15*x^4+85*x^3+36*x^2+49*x+60', 'y^2=5*x^6+5*x^3+14', 'y^2=72*x^6+69*x^5+6*x^4+52*x^3+51*x^2+46*x+88', 'y^2=5*x^6+5*x^3+87', 'y^2=11*x^6+9*x^5+43*x^4+92*x^3+96*x^2+78*x+84', 'y^2=75*x^6+36*x^5+29*x^4+81*x^3+71*x^2+29*x+29', 'y^2=47*x^6+40*x^5+12*x^4+89*x^3+19*x^2+12*x+62', 'y^2=80*x^6+58*x^5+89*x^4+43*x^3+51*x^2+21*x+46', 'y^2=76*x^6+92*x^5+36*x^4+86*x^3+7*x^2+88*x+70', 'y^2=56*x^6+28*x^5+46*x^4+37*x^3+26*x^2+96*x+55', 'y^2=33*x^6+68*x^5+70*x^4+78*x^3+20*x^2+80*x+41', 'y^2=83*x^6+16*x^5+28*x^4+58*x^3+5*x^2+72*x+30', 'y^2=50*x^6+20*x^5+20*x^4+41*x^3+84*x^2+9*x+36', 'y^2=79*x^6+32*x^5+53*x^4+22*x^3+52*x^2+41*x+47', 'y^2=57*x^6+26*x^5+42*x^4+20*x^3+29*x^2+29*x+44', 'y^2=39*x^6+63*x^5+28*x^4+73*x^2+60*x+9', 'y^2=93*x^6+70*x^5+80*x^4+52*x^3+7*x^2+28*x', 'y^2=12*x^6+69*x^5+34*x^4+29*x^3+9*x^2+50*x+86', 'y^2=85*x^6+65*x^5+76*x^4+58*x^3+4*x^2+4*x+70', 'y^2=30*x^6+14*x^5+79*x^4+12*x^3+3*x^2+90*x+44', 'y^2=51*x^6+38*x^5+28*x^4+9*x^3+23*x^2+5*x+5', 'y^2=11*x^6+7*x^5+25*x^3+87*x^2+40*x+95', 'y^2=23*x^6+32*x^5+29*x^4+80*x^3+49*x^2+89*x+19', 'y^2=47*x^6+88*x^5+62*x^3+48*x^2+84*x+28', 'y^2=27*x^6+26*x^5+75*x^4+5*x^3+8*x^2+82*x+51', 'y^2=4*x^6+36*x^5+75*x^4+52*x^3+14*x^2+53*x+7', 'y^2=44*x^6+71*x^5+61*x^4+15*x^3+9*x^2+83*x+59', 'y^2=22*x^6+14*x^5+63*x^4+86*x^3+38*x^2+37*x+66', 'y^2=18*x^6+37*x^5+43*x^4+86*x^3+72*x^2+21*x+90', 'y^2=49*x^6+26*x^5+57*x^4+80*x^3+48*x^2+15*x+83', 'y^2=76*x^6+x^5+60*x^4+29*x^3+55*x^2+36*x+69', 'y^2=82*x^6+71*x^5+11*x^4+29*x^3+66*x^2+42*x+94', 'y^2=27*x^5+76*x^4+78*x^3+73*x^2+57*x+79', 'y^2=60*x^6+74*x^5+96*x^4+50*x^3+3*x^2+29*x+12', 'y^2=94*x^6+31*x^5+27*x^4+53*x^3+61*x^2+55*x+67', 'y^2=26*x^6+75*x^5+63*x^4+10*x^3+66*x^2+43*x+25', 'y^2=20*x^6+59*x^5+56*x^4+95*x^3+31*x^2+19*x+1', 'y^2=8*x^6+41*x^5+5*x^4+61*x^3+72*x^2+15*x+63', 'y^2=40*x^6+3*x^5+78*x^4+49*x^3+42*x^2+57*x+21', 'y^2=11*x^6+8*x^5+62*x^4+43*x^3+90*x^2+96*x+15', 'y^2=74*x^5+49*x^4+21*x^3+80*x^2+66*x+35', 'y^2=82*x^6+91*x^5+67*x^4+71*x^3+12*x^2+30*x+82', 'y^2=75*x^6+7*x^5+46*x^4+51*x^3+75*x^2+96*x+19', 'y^2=46*x^6+56*x^5+12*x^4+30*x^3+14*x^2+7*x+50', 'y^2=75*x^6+35*x^5+43*x^3+57*x^2+87*x+61', 'y^2=4*x^6+54*x^5+82*x^4+81*x^3+29*x^2+38*x+80', 'y^2=72*x^6+51*x^5+3*x^4+65*x^3+27*x^2+72*x+95', 'y^2=4*x^6+74*x^5+50*x^4+39*x^3+12*x^2+54*x+77', 'y^2=84*x^6+2*x^5+6*x^4+50*x^3+31*x^2+13*x+43', 'y^2=91*x^6+43*x^5+46*x^4+48*x^3+20*x^2+77*x+55', 'y^2=33*x^6+53*x^4+52*x^3+17*x^2+25*x+18', 'y^2=54*x^6+37*x^5+5*x^4+29*x^3+76*x^2+12*x+19', 'y^2=4*x^6+65*x^5+78*x^4+86*x^3+63*x^2+80*x+75', 'y^2=69*x^6+68*x^5+6*x^4+40*x^3+24*x^2+63*x+65', 'y^2=95*x^6+37*x^5+46*x^4+64*x^3+75*x^2+43*x+60', 'y^2=66*x^6+36*x^5+82*x^4+45*x^3+34*x^2+17*x+68', 'y^2=33*x^6+58*x^5+2*x^4+42*x^3+27*x^2+34*x+79', 'y^2=37*x^6+24*x^5+4*x^4+25*x^3+24*x^2+36*x+11', 'y^2=64*x^6+69*x^5+72*x^4+78*x^3+59*x^2+37*x+77', 'y^2=79*x^6+69*x^5+23*x^4+91*x^3+10*x^2+66*x+81', 'y^2=25*x^6+14*x^5+79*x^4+60*x^3+2*x^2+53*x+31', 'y^2=9*x^6+36*x^5+77*x^4+57*x^3+70*x^2+88*x+90', 'y^2=84*x^6+70*x^5+55*x^4+24*x^3+82*x^2+78*x+75', 'y^2=71*x^6+27*x^5+x^4+52*x^3+55*x^2+89', 'y^2=7*x^6+4*x^5+92*x^4+79*x^3+56*x^2+40*x+47', 'y^2=95*x^6+48*x^5+38*x^4+71*x^3+24*x^2+31*x+60', 'y^2=46*x^6+46*x^5+64*x^4+73*x^3+65*x^2+44*x+53', 'y^2=30*x^6+17*x^5+61*x^4+96*x^3+21*x^2+12*x+83', 'y^2=42*x^6+53*x^5+17*x^4+31*x^3+46*x^2+46*x+6', 'y^2=58*x^6+47*x^5+75*x^4+93*x^3+91*x^2+90*x+76', 'y^2=59*x^6+73*x^5+35*x^4+58*x^3+36*x^2+75*x+19', 'y^2=62*x^6+22*x^5+65*x^4+21*x^3+46*x^2+27*x+86', 'y^2=46*x^6+45*x^5+12*x^4+27*x^3+91*x^2+64*x+85', 'y^2=77*x^6+2*x^5+23*x^4+50*x^3+13*x^2+48*x+74', 'y^2=53*x^6+66*x^5+32*x^4+38*x^3+77*x^2+44*x+36', 'y^2=94*x^6+45*x^5+75*x^4+93*x^3+88*x^2+20*x+91', 'y^2=34*x^6+39*x^5+13*x^4+17*x^3+63*x^2+90*x+20', 'y^2=x^6+4*x^5+25*x^4+29*x^3+30*x^2+64*x+38', 'y^2=72*x^6+77*x^5+41*x^4+18*x^3+39*x^2+54*x+1', 'y^2=64*x^6+62*x^5+63*x^4+96*x^3+x^2+79*x+57', 'y^2=10*x^6+53*x^5+x^4+7*x^3+24*x^2+9*x+45', 'y^2=46*x^6+90*x^5+55*x^4+84*x^3+3*x^2+63*x+26', 'y^2=62*x^5+26*x^4+27*x^3+52*x^2+70*x+74', 'y^2=9*x^6+85*x^5+79*x^4+61*x^3+2*x^2+27*x+28', 'y^2=69*x^6+83*x^5+88*x^4+33*x^3+77*x^2+47*x+36', 'y^2=46*x^6+38*x^5+76*x^4+32*x^3+57*x+39', 'y^2=90*x^6+91*x^5+37*x^4+24*x^3+18*x^2+72*x+20', 'y^2=54*x^6+33*x^5+38*x^4+11*x^3+77*x^2+76*x+10', 'y^2=37*x^6+86*x^5+26*x^4+41*x^3+39*x^2+18*x+96', 'y^2=10*x^6+82*x^5+83*x^4+48*x^3+19*x^2+32*x+2', 'y^2=65*x^6+8*x^5+37*x^4+84*x^3+34*x^2+33*x+92', 'y^2=76*x^6+11*x^5+64*x^4+3*x^3+75*x^2+24*x+83', 'y^2=92*x^6+96*x^5+89*x^4+96*x^3+27*x^2+35*x+4', 'y^2=24*x^6+77*x^5+54*x^4+82*x^3+24*x^2+16*x+95', 'y^2=23*x^6+73*x^5+13*x^4+75*x^3+94*x^2+22*x', 'y^2=57*x^6+70*x^5+49*x^4+80*x^3+26*x^2+5*x+3', 'y^2=66*x^6+73*x^5+73*x^4+20*x^3+8*x^2+5*x+89', 'y^2=21*x^6+16*x^5+6*x^4+64*x^3+13*x^2+22*x+32'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 15, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.339.1'], 'geometric_splitting_field': '2.0.339.1', 'geometric_splitting_polynomials': [[85, -1, 1]], 'group_structure_count': 4, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 138, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 138, 'label': '2.97.h_abw', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.114921.1'], 'p': 97, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 36], [1, 7, 3, 18]], 'poly': [1, 7, -48, 679, 9409], 'poly_str': '1 7 -48 679 9409 ', 'primitive_models': [], 'principal_polarization_count': 138, 'q': 97, 'real_poly': [1, 7, -242], 'simple_distinct': ['2.97.h_abw'], 'simple_factors': ['2.97.h_abwA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F+4*V+27', '3,2*F-3*V-19'], 'size': 234, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.114921.1', 'splitting_polynomials': [[784, 28, 29, -1, 1]], 'twist_count': 6, 'twists': [['2.97.ah_abw', '2.9409.afp_reu', 2], ['2.97.ao_jj', '2.912673.fai_khdgg', 3], ['2.97.a_fp', '2.832972004929.aeovqa_nffcnzcty', 6], ['2.97.o_jj', '2.832972004929.aeovqa_nffcnzcty', 6], ['2.97.a_afp', '2.693842360995438000295041.fnhhwsjnw_bnktnlymglahcwdbkg', 12]], 'weak_equivalence_count': 15, 'zfv_index': 144, 'zfv_index_factorization': [[2, 4], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 72, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 2304, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-F+4*V+27', '3,2*F-3*V-19']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 121988
{'base_label': '2.97.h_abw', 'extension_degree': 1, 'extension_label': '2.97.h_abw', 'multiplicity': 1}
-
id: 121989
{'base_label': '2.97.h_abw', 'extension_degree': 3, 'extension_label': '1.912673.cne', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.114921.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.97.h_abw', 'galois_group': '4T2', 'places': [['7', '1', '0', '0'], ['93', '1', '0', '0'], ['54', '1', '0', '0'], ['39', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.339.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.912673.cne', 'galois_group': '2T1', 'places': [['3', '1'], ['93', '1']]}