L(s) = 1 | − 2·2-s + 3-s + 3·4-s − 2·6-s − 4·8-s + 9-s − 11-s + 3·12-s + 5·16-s − 12·17-s − 2·18-s + 2·22-s − 4·24-s − 10·25-s + 27-s + 12·29-s + 16·31-s − 6·32-s − 33-s + 24·34-s + 3·36-s − 20·37-s + 12·41-s − 3·44-s + 5·48-s − 10·49-s + 20·50-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.816·6-s − 1.41·8-s + 1/3·9-s − 0.301·11-s + 0.866·12-s + 5/4·16-s − 2.91·17-s − 0.471·18-s + 0.426·22-s − 0.816·24-s − 2·25-s + 0.192·27-s + 2.22·29-s + 2.87·31-s − 1.06·32-s − 0.174·33-s + 4.11·34-s + 1/2·36-s − 3.28·37-s + 1.87·41-s − 0.452·44-s + 0.721·48-s − 1.42·49-s + 2.82·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143748 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143748 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.958855021658912251315559727512, −8.672134764185654449392944782672, −8.107075144714634957439631011601, −8.013104010237496671597514230187, −7.11812804222970713232777270208, −6.77506565559004391547494912024, −6.37459703187143981641083529758, −5.86376231731980296819583852288, −4.69333471332706230755932945396, −4.54132076139220643267324954006, −3.59300699702492954515692805621, −2.63915482624572011540809421288, −2.37545091357255938865951638025, −1.45668918986239249375622086896, 0,
1.45668918986239249375622086896, 2.37545091357255938865951638025, 2.63915482624572011540809421288, 3.59300699702492954515692805621, 4.54132076139220643267324954006, 4.69333471332706230755932945396, 5.86376231731980296819583852288, 6.37459703187143981641083529758, 6.77506565559004391547494912024, 7.11812804222970713232777270208, 8.013104010237496671597514230187, 8.107075144714634957439631011601, 8.672134764185654449392944782672, 8.958855021658912251315559727512