Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 79 x^{2} )( 1 + 14 x + 79 x^{2} )$ |
| $1 - 38 x^{2} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.211343260462$, $\pm0.788656739538$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $456$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6204$ | $38489616$ | $243088112124$ | $1517968871654400$ | $9468276076859377404$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6166$ | $493040$ | $38972158$ | $3077056400$ | $243088768726$ | $19203908986160$ | $1517108722031998$ | $119851595982618320$ | $9468276071091907606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 456 curves (of which all are hyperelliptic):
- $y^2=9 x^6+34 x^5+5 x^4+49 x^3+25 x^2+74 x+35$
- $y^2=27 x^6+23 x^5+15 x^4+68 x^3+75 x^2+64 x+26$
- $y^2=9 x^6+9 x^5+13 x^4+78 x^3+8 x^2+14 x+39$
- $y^2=27 x^6+27 x^5+39 x^4+76 x^3+24 x^2+42 x+38$
- $y^2=45 x^6+36 x^5+25 x^4+50 x^3+43 x^2+16 x+66$
- $y^2=11 x^6+42 x^5+77 x^4+5 x^3+18 x^2+5 x+39$
- $y^2=29 x^6+71 x^5+54 x^4+12 x^3+41 x^2+71 x+37$
- $y^2=8 x^6+55 x^5+4 x^4+36 x^3+44 x^2+55 x+32$
- $y^2=41 x^6+21 x^5+22 x^4+7 x^3+4 x^2+49 x+25$
- $y^2=44 x^6+63 x^5+66 x^4+21 x^3+12 x^2+68 x+75$
- $y^2=31 x^6+67 x^5+6 x^4+33 x^3+55 x^2+26 x+56$
- $y^2=14 x^6+43 x^5+18 x^4+20 x^3+7 x^2+78 x+10$
- $y^2=33 x^6+52 x^5+48 x^4+72 x^3+59 x^2+60 x+46$
- $y^2=20 x^6+77 x^5+65 x^4+58 x^3+19 x^2+22 x+59$
- $y^2=68 x^6+55 x^5+34 x^4+70 x^3+49 x^2+75 x+35$
- $y^2=46 x^6+7 x^5+23 x^4+52 x^3+68 x^2+67 x+26$
- $y^2=43 x^6+11 x^4+33 x^2+55$
- $y^2=38 x^6+7 x^4+21 x^2+78$
- $y^2=8 x^6+77 x^5+4 x^4+63 x^3+70 x^2+46 x+30$
- $y^2=24 x^6+73 x^5+12 x^4+31 x^3+52 x^2+59 x+11$
- and 436 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ao $\times$ 1.79.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.abm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.