Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 23 x^{2} )( 1 + 6 x + 23 x^{2} )$ |
$1 + 10 x^{2} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.284877382774$, $\pm0.715122617226$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $156$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $540$ | $291600$ | $148021020$ | $78848640000$ | $41426522660700$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $550$ | $12168$ | $281758$ | $6436344$ | $148006150$ | $3404825448$ | $78310269118$ | $1801152661464$ | $41426534107750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=7 x^6+3 x^5+4 x^4+6 x^3+14 x^2+8 x+4$
- $y^2=3 x^6+4 x^5+13 x^4+16 x^3+2 x^2+17 x+13$
- $y^2=15 x^6+20 x^5+19 x^4+11 x^3+10 x^2+16 x+19$
- $y^2=15 x^6+6 x^5+9 x^4+12 x^3+9 x^2+6 x+15$
- $y^2=6 x^6+7 x^5+22 x^4+14 x^3+22 x^2+7 x+6$
- $y^2=16 x^5+12 x^4+12 x^3+15 x^2+2 x$
- $y^2=7 x^6+19 x^5+17 x^4+4 x^2+5 x+21$
- $y^2=12 x^6+3 x^5+16 x^4+20 x^2+2 x+13$
- $y^2=17 x^6+8 x^5+2 x^4+15 x^2+3 x+1$
- $y^2=16 x^6+17 x^5+10 x^4+6 x^2+15 x+5$
- $y^2=3 x^6+19 x^5+20 x^4+13 x^3+2 x^2+2 x+7$
- $y^2=15 x^6+3 x^5+8 x^4+19 x^3+10 x^2+10 x+12$
- $y^2=3 x^6+2 x^5+18 x^4+2 x^3+7 x^2+3 x+19$
- $y^2=9 x^6+13 x^5+18 x^4+4 x^3+3 x^2+x+1$
- $y^2=22 x^6+19 x^5+21 x^4+20 x^3+15 x^2+5 x+5$
- $y^2=12 x^6+9 x^5+18 x^4+6 x^3+9 x^2+8 x+14$
- $y^2=14 x^6+22 x^5+21 x^4+7 x^3+22 x^2+17 x+1$
- $y^2=21 x^6+10 x^5+9 x^4+21 x^3+13 x^2+14 x+12$
- $y^2=13 x^6+4 x^5+22 x^4+13 x^3+19 x^2+x+14$
- $y^2=2 x^6+17 x^5+21 x^4+20 x^3+7 x^2+7 x+12$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.ag $\times$ 1.23.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-14}) \)$)$ |
Base change
This is a primitive isogeny class.