Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 10 x + 37 x^{2} )^{2}$ |
$1 + 20 x + 174 x^{2} + 740 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.807138866923$, $\pm0.807138866923$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $8$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2304$ | $1806336$ | $2554695936$ | $3520216498176$ | $4806289499998464$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $1318$ | $50434$ | $1878286$ | $69310858$ | $2565904822$ | $94931317714$ | $3512478446878$ | $129961770564058$ | $4808584101988678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=31 x^5+36 x^4+6 x^3+36 x^2+31 x$
- $y^2=21 x^6+21 x^5+10 x^4+10 x^2+21 x+21$
- $y^2=26 x^6+34 x^4+34 x^2+26$
- $y^2=33 x^6+28 x^4+28 x^2+33$
- $y^2=x^6+36$
- $y^2=x^6+x^3+11$
- $y^2=30 x^6+11 x^5+32 x^4+19 x^3+22 x^2+25 x+33$
- $y^2=27 x^6+32 x^5+36 x^4+33 x^3+36 x^2+32 x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.