Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 17 x^{2} )^{2}$ |
$1 + 12 x + 70 x^{2} + 204 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.759367463010$, $\pm0.759367463010$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $6$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $576$ | $82944$ | $23270976$ | $7072137216$ | $2010565187136$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $286$ | $4734$ | $84670$ | $1416030$ | $24141022$ | $410383038$ | $6975432574$ | $118589071518$ | $2015992253086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=x^5+16 x$
- $y^2=8 x^6+14 x^5+5 x^4+8 x^3+3 x^2+3 x+2$
- $y^2=4 x^6+5 x^5+5 x^4+6 x^3+6 x^2+14 x+8$
- $y^2=11 x^6+4 x^4+4 x^2+11$
- $y^2=3 x^6+10 x^4+10 x^2+3$
- $y^2=9 x^6+13 x^5+10 x^4+13 x^3+3 x^2+x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.