Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 97 x^{2} )^{2}$ |
| $1 - 28 x + 390 x^{2} - 2716 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.248359198326$, $\pm0.248359198326$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $62$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7056$ | $88510464$ | $835403312016$ | $7840765305225216$ | $73744720761342926736$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $9406$ | $915334$ | $88566910$ | $8587609030$ | $832972117822$ | $80798259987718$ | $7837433240560894$ | $760231056076708678$ | $73742412687722993086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=64 x^6+43 x^5+93 x^4+78 x^3+93 x^2+43 x+64$
- $y^2=91 x^6+91 x^5+73 x^4+4 x^3+66 x^2+88 x+49$
- $y^2=6 x^6+82 x^5+65 x^4+40 x^3+79 x^2+7 x+93$
- $y^2=x^6+36 x^5+44 x^4+35 x^3+44 x^2+36 x+1$
- $y^2=22 x^6+78 x^5+28 x^4+68 x^3+74 x^2+41 x+8$
- $y^2=81 x^6+31 x^5+79 x^4+11 x^3+79 x^2+31 x+81$
- $y^2=59 x^6+37 x^5+40 x^4+62 x^3+83 x^2+46 x+5$
- $y^2=43 x^6+33 x^5+63 x^4+51 x^3+63 x^2+33 x+43$
- $y^2=73 x^6+50 x^5+34 x^4+25 x^3+82 x^2+68 x+37$
- $y^2=41 x^6+94 x^4+94 x^2+41$
- $y^2=59 x^6+88 x^5+92 x^4+69 x^3+92 x^2+88 x+59$
- $y^2=50 x^6+3 x^5+22 x^4+16 x^3+22 x^2+3 x+50$
- $y^2=62 x^6+86 x^4+86 x^2+62$
- $y^2=87 x^6+44 x^5+43 x^4+46 x^3+43 x^2+44 x+87$
- $y^2=5 x^6+4 x^5+36 x^4+79 x^3+36 x^2+4 x+5$
- $y^2=20 x^6+25 x^5+49 x^4+90 x^3+49 x^2+25 x+20$
- $y^2=15 x^6+62 x^4+62 x^2+15$
- $y^2=52 x^6+57 x^5+43 x^4+10 x^3+49 x^2+63 x+63$
- $y^2=85 x^6+88 x^5+8 x^4+44 x^3+8 x^2+88 x+85$
- $y^2=34 x^6+61 x^5+78 x^4+52 x^3+78 x^2+61 x+34$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.