L(s) = 1 | − 8·11-s + 12·17-s − 8·19-s − 6·25-s − 4·41-s + 8·43-s + 2·49-s + 8·59-s + 8·67-s − 12·73-s − 24·83-s − 20·89-s − 28·97-s + 8·107-s − 4·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + ⋯ |
L(s) = 1 | − 2.41·11-s + 2.91·17-s − 1.83·19-s − 6/5·25-s − 0.624·41-s + 1.21·43-s + 2/7·49-s + 1.04·59-s + 0.977·67-s − 1.40·73-s − 2.63·83-s − 2.11·89-s − 2.84·97-s + 0.773·107-s − 0.376·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.844581178668094717437191348011, −8.291996087541312922253124488251, −8.093022628739907221893201157530, −7.52219997040636286950635023716, −7.33135946825865482348621844071, −6.44434197467298206476021389307, −5.82131382158921014822362291005, −5.37335304530331906156568812203, −5.25332741283121206700463308290, −4.20875443528614711634884665822, −3.80880328694342425730935973216, −2.80335944085781759882923856447, −2.59447091927996366543258857368, −1.47354540780337201919328149138, 0,
1.47354540780337201919328149138, 2.59447091927996366543258857368, 2.80335944085781759882923856447, 3.80880328694342425730935973216, 4.20875443528614711634884665822, 5.25332741283121206700463308290, 5.37335304530331906156568812203, 5.82131382158921014822362291005, 6.44434197467298206476021389307, 7.33135946825865482348621844071, 7.52219997040636286950635023716, 8.093022628739907221893201157530, 8.291996087541312922253124488251, 8.844581178668094717437191348011