Properties

Label 4-165888-1.1-c1e2-0-23
Degree $4$
Conductor $165888$
Sign $-1$
Analytic cond. $10.5771$
Root an. cond. $1.80340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s + 12·17-s − 8·19-s − 6·25-s − 4·41-s + 8·43-s + 2·49-s + 8·59-s + 8·67-s − 12·73-s − 24·83-s − 20·89-s − 28·97-s + 8·107-s − 4·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + ⋯
L(s)  = 1  − 2.41·11-s + 2.91·17-s − 1.83·19-s − 6/5·25-s − 0.624·41-s + 1.21·43-s + 2/7·49-s + 1.04·59-s + 0.977·67-s − 1.40·73-s − 2.63·83-s − 2.11·89-s − 2.84·97-s + 0.773·107-s − 0.376·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(165888\)    =    \(2^{11} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(10.5771\)
Root analytic conductor: \(1.80340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 165888,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.a_ac
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.11.i_bm
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.17.am_cs
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.19.i_cc
23$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.23.a_bu
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.a_cc
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.a_cs
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.41.e_di
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.43.ai_dy
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.47.a_be
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.53.a_g
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.59.ai_fe
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.61.a_di
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.67.ai_fu
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.71.a_aek
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.73.m_ha
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.79.a_fm
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \) 2.83.y_ly
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.89.u_ks
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \) 2.97.bc_pa
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.844581178668094717437191348011, −8.291996087541312922253124488251, −8.093022628739907221893201157530, −7.52219997040636286950635023716, −7.33135946825865482348621844071, −6.44434197467298206476021389307, −5.82131382158921014822362291005, −5.37335304530331906156568812203, −5.25332741283121206700463308290, −4.20875443528614711634884665822, −3.80880328694342425730935973216, −2.80335944085781759882923856447, −2.59447091927996366543258857368, −1.47354540780337201919328149138, 0, 1.47354540780337201919328149138, 2.59447091927996366543258857368, 2.80335944085781759882923856447, 3.80880328694342425730935973216, 4.20875443528614711634884665822, 5.25332741283121206700463308290, 5.37335304530331906156568812203, 5.82131382158921014822362291005, 6.44434197467298206476021389307, 7.33135946825865482348621844071, 7.52219997040636286950635023716, 8.093022628739907221893201157530, 8.291996087541312922253124488251, 8.844581178668094717437191348011

Graph of the $Z$-function along the critical line