Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 6 x + 73 x^{2} )^{2}$ |
| $1 + 12 x + 182 x^{2} + 876 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.614200251220$, $\pm0.614200251220$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $80$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6400$ | $29593600$ | $150481926400$ | $806378250240000$ | $4297994044128160000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $86$ | $5550$ | $386822$ | $28395358$ | $2073249206$ | $151333371150$ | $11047390684262$ | $806460201328318$ | $58871586623605526$ | $4297625822222832750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=65 x^6+8 x^5+38 x^4+12 x^3+38 x^2+8 x+65$
- $y^2=71 x^6+12 x^5+42 x^4+3 x^3+20 x^2+35 x+54$
- $y^2=64 x^6+18 x^5+47 x^4+40 x^3+43 x^2+65 x+72$
- $y^2=38 x^6+33 x^5+25 x^4+72 x^3+25 x^2+33 x+38$
- $y^2=40 x^6+12 x^5+20 x^4+46 x^3+30 x^2+27 x+62$
- $y^2=23 x^6+35 x^5+20 x^4+13 x^3+14 x^2+50 x+23$
- $y^2=31 x^6+33 x^5+62 x^4+64 x^3+6 x^2+52 x+50$
- $y^2=19 x^6+20 x^5+50 x^4+31 x^3+29 x^2+40 x+35$
- $y^2=62 x^6+26 x^5+42 x^4+3 x^3+41 x^2+51 x+11$
- $y^2=37 x^6+34 x^5+26 x^4+53 x^3+16 x^2+66 x+53$
- $y^2=18 x^6+56 x^5+64 x^4+56 x^3+64 x^2+56 x+18$
- $y^2=34 x^6+5 x^5+5 x^4+12 x^3+5 x^2+5 x+34$
- $y^2=53 x^6+48 x^5+38 x^4+71 x^3+22 x^2+26 x+50$
- $y^2=22 x^6+29 x^5+26 x^4+2 x^3+50 x^2+40 x+7$
- $y^2=63 x^6+42 x^5+3 x^4+53 x^3+32 x^2+37 x+62$
- $y^2=66 x^6+28 x^5+46 x^4+15 x^3+46 x^2+28 x+66$
- $y^2=29 x^6+48 x^5+68 x^4+63 x^3+26 x^2+3 x+28$
- $y^2=56 x^6+23 x^5+50 x^4+41 x^3+68 x^2+33 x+66$
- $y^2=34 x^6+16 x^5+72 x^4+55 x^3+48 x^2+65 x+70$
- $y^2=67 x^6+44 x^5+55 x^4+34 x^3+55 x^2+44 x+67$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.