Invariants
    This isogeny class is not simple,
  
    primitive, 
  
    ordinary,
  
    and not supersingular.
  
    It is principally polarizable and
  contains a Jacobian.
    
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
  
    | $r$ | 
                 $1$  | 
                 $2$  | 
                 $3$  | 
                 $4$  | 
                 $5$  | 
            
  
  
    | $A(\F_{q^r})$ | 
                 $6400$  | 
                 $29593600$  | 
                 $150481926400$  | 
                 $806378250240000$  | 
                 $4297994044128160000$  | 
            
  
Point counts of the curve
  
    | $r$ | 
                $1$ | 
                $2$ | 
                $3$ | 
                $4$ | 
                $5$ | 
                $6$ | 
                $7$ | 
                $8$ | 
                $9$ | 
                $10$ | 
            
  
    | $C(\F_{q^r})$ | 
                $86$ | 
                $5550$ | 
                $386822$ | 
                $28395358$ | 
                $2073249206$ | 
                $151333371150$ | 
                $11047390684262$ | 
                $806460201328318$ | 
                $58871586623605526$ | 
                $4297625822222832750$ | 
            
  
Jacobians and polarizations
      This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
  - $y^2=65 x^6+8 x^5+38 x^4+12 x^3+38 x^2+8 x+65$
 
  - $y^2=71 x^6+12 x^5+42 x^4+3 x^3+20 x^2+35 x+54$
 
  - $y^2=64 x^6+18 x^5+47 x^4+40 x^3+43 x^2+65 x+72$
 
  - $y^2=38 x^6+33 x^5+25 x^4+72 x^3+25 x^2+33 x+38$
 
  - $y^2=40 x^6+12 x^5+20 x^4+46 x^3+30 x^2+27 x+62$
 
  - $y^2=23 x^6+35 x^5+20 x^4+13 x^3+14 x^2+50 x+23$
 
  - $y^2=31 x^6+33 x^5+62 x^4+64 x^3+6 x^2+52 x+50$
 
  - $y^2=19 x^6+20 x^5+50 x^4+31 x^3+29 x^2+40 x+35$
 
  - $y^2=62 x^6+26 x^5+42 x^4+3 x^3+41 x^2+51 x+11$
 
  - $y^2=37 x^6+34 x^5+26 x^4+53 x^3+16 x^2+66 x+53$
 
  - $y^2=18 x^6+56 x^5+64 x^4+56 x^3+64 x^2+56 x+18$
 
  - $y^2=34 x^6+5 x^5+5 x^4+12 x^3+5 x^2+5 x+34$
 
  - $y^2=53 x^6+48 x^5+38 x^4+71 x^3+22 x^2+26 x+50$
 
  - $y^2=22 x^6+29 x^5+26 x^4+2 x^3+50 x^2+40 x+7$
 
  - $y^2=63 x^6+42 x^5+3 x^4+53 x^3+32 x^2+37 x+62$
 
  - $y^2=66 x^6+28 x^5+46 x^4+15 x^3+46 x^2+28 x+66$
 
  - $y^2=29 x^6+48 x^5+68 x^4+63 x^3+26 x^2+3 x+28$
 
  - $y^2=56 x^6+23 x^5+50 x^4+41 x^3+68 x^2+33 x+66$
 
  - $y^2=34 x^6+16 x^5+72 x^4+55 x^3+48 x^2+65 x+70$
 
  - $y^2=67 x^6+44 x^5+55 x^4+34 x^3+55 x^2+44 x+67$
 
  - and 60 more
 
  - $y^2=43 x^6+44 x^5+71 x^4+34 x^3+24 x^2+58 x+10$
 
  - $y^2=46 x^6+2 x^5+14 x^4+49 x^3+18 x^2+15 x+35$
 
  - $y^2=21 x^6+54 x^5+63 x^4+15 x^3+62 x^2+23 x+7$
 
  - $y^2=8 x^6+24 x^5+63 x^4+28 x^3+63 x^2+24 x+8$
 
  - $y^2=x^6+21 x^5+52 x^4+70 x^3+43 x^2+22 x+1$
 
  - $y^2=24 x^6+49 x^5+61 x^4+21 x^3+61 x^2+49 x+24$
 
  - $y^2=20 x^6+10 x^5+68 x^4+7 x^3+52 x^2+45 x+13$
 
  - $y^2=14 x^6+45 x^5+62 x^4+27 x^3+7 x^2+14 x+31$
 
  - $y^2=64 x^6+44 x^5+22 x^4+67 x^3+72 x^2+61 x+62$
 
  - $y^2=72 x^6+11 x^5+21 x^4+22 x^3+21 x^2+11 x+72$
 
  - $y^2=19 x^6+10 x^5+61 x^4+30 x^3+48 x^2+49 x+34$
 
  - $y^2=18 x^6+36 x^5+53 x^4+4 x^3+53 x^2+36 x+18$
 
  - $y^2=64 x^6+21 x^5+18 x^4+71 x^3+70 x^2+31 x+70$
 
  - $y^2=18 x^6+71 x^5+11 x^4+71 x^3+31 x^2+36 x+16$
 
  - $y^2=51 x^6+45 x^4+45 x^2+51$
 
  - $y^2=56 x^6+52 x^4+52 x^2+56$
 
  - $y^2=36 x^6+52 x^5+39 x^4+30 x^3+42 x^2+21 x+23$
 
  - $y^2=32 x^6+68 x^5+53 x^4+27 x^3+7 x^2+66 x+69$
 
  - $y^2=38 x^6+25 x^5+48 x^4+9 x^3+71 x^2+52 x+2$
 
  - $y^2=5 x^6+65 x^5+9 x^4+34 x^3+9 x^2+65 x+5$
 
  - $y^2=31 x^6+54 x^5+35 x^4+47 x^3+35 x^2+54 x+31$
 
  - $y^2=18 x^6+8 x^5+58 x^4+69 x^3+39 x^2+57 x+6$
 
  - $y^2=57 x^6+48 x^5+18 x^4+22 x^3+61 x^2+35 x+62$
 
  - $y^2=19 x^6+30 x^5+19 x^4+49 x^3+57 x^2+51 x+2$
 
  - $y^2=61 x^6+5 x^5+49 x^4+4 x^3+9 x^2+68 x+32$
 
  - $y^2=x^6+70 x^5+36 x^4+64 x^3+15 x^2+40$
 
  - $y^2=6 x^6+14 x^5+9 x^4+17 x^3+38 x^2+45 x+71$
 
  - $y^2=47 x^6+11 x^5+34 x^4+15 x^3+28 x^2+68 x+60$
 
  - $y^2=15 x^6+53 x^5+51 x^4+4 x^3+56 x^2+14 x+40$
 
  - $y^2=33 x^6+72 x^5+22 x^4+19 x^3+59 x^2+37 x+47$
 
  - $y^2=38 x^6+60 x^5+12 x^4+23 x^3+12 x^2+60 x+38$
 
  - $y^2=37 x^6+26 x^5+20 x^4+54 x^3+35 x^2+18 x+28$
 
  - $y^2=19 x^6+29 x^5+70 x^4+62 x^3+45 x^2+3 x+18$
 
  - $y^2=70 x^6+9 x^5+35 x^4+27 x^3+6 x^2+60 x+57$
 
  - $y^2=56 x^6+24 x^5+60 x^4+4 x^3+20 x^2+68 x+22$
 
  - $y^2=66 x^6+64 x^5+19 x^4+37 x^3+44 x^2+30 x+24$
 
  - $y^2=52 x^6+48 x^5+47 x^4+65 x^3+36 x^2+10 x+32$
 
  - $y^2=44 x^6+39 x^4+39 x^2+44$
 
  - $y^2=69 x^6+41 x^5+37 x^4+6 x^3+37 x^2+41 x+69$
 
  - $y^2=9 x^6+20 x^5+70 x^4+68 x^3+2 x^2+17 x+46$
 
  - $y^2=16 x^6+35 x^5+58 x^4+21 x^3+61 x^2+22 x+5$
 
  - $y^2=7 x^6+32 x^5+43 x^4+46 x^3+43 x^2+32 x+7$
 
  - $y^2=65 x^6+48 x^4+48 x^2+65$
 
  - $y^2=53 x^6+4 x^5+65 x^4+26 x^3+36 x^2+38 x+71$
 
  - $y^2=3 x^6+66 x^4+66 x^2+3$
 
  - $y^2=31 x^5+41 x^4+70 x^3+41 x^2+31 x$
 
  - $y^2=37 x^6+70 x^5+5 x^4+69 x^3+5 x^2+70 x+37$
 
  - $y^2=49 x^5+48 x^4+71 x^3+2 x^2+3 x$
 
  - $y^2=72 x^6+56 x^5+51 x^4+33 x^3+66 x^2+28 x+51$
 
  - $y^2=23 x^6+49 x^5+41 x^4+57 x^3+2 x^2+25 x+61$
 
  - $y^2=32 x^6+30 x^5+2 x^4+59 x^3+x^2+44 x+4$
 
  - $y^2=16 x^6+67 x^5+x^4+4 x^3+50 x^2+46 x$
 
  - $y^2=71 x^6+16 x^5+31 x^4+19 x^3+22 x^2+35 x+51$
 
  - $y^2=43 x^6+3 x^5+64 x^4+25 x^3+64 x^2+3 x+43$
 
  - $y^2=29 x^6+41 x^4+41 x^2+29$
 
  - $y^2=9 x^6+68 x^4+68 x^2+9$
 
  - $y^2=48 x^6+31 x^5+4 x^4+5 x^3+18 x^2+x+15$
 
  - $y^2=63 x^6+x^5+23 x^4+56 x^3+23 x^2+x+63$
 
  - $y^2=21 x^6+10 x^5+34 x^4+68 x^3+31 x^2+19 x+25$
 
  - $y^2=27 x^6+39 x^5+15 x^4+29 x^3+3 x^2+28 x+43$
 
  
 All geometric endomorphisms are defined over $\F_{73}$.
 
 Endomorphism algebra over $\F_{73}$
Base change
This is a primitive isogeny class.
Twists