Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 16 x + 71 x^{2} )( 1 + 16 x + 71 x^{2} )$ |
$1 - 114 x^{2} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.101666819831$, $\pm0.898333180169$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $49$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4928$ | $24285184$ | $128100526400$ | $645605491277824$ | $3255243554613393728$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4814$ | $357912$ | $25405854$ | $1804229352$ | $128100768878$ | $9095120158392$ | $645753615909694$ | $45848500718449032$ | $3255243558216906254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=51 x^6+66 x^5+66 x^4+30 x^3+21 x^2+68 x+22$
- $y^2=2 x^6+36 x^5+36 x^4+68 x^3+5 x^2+50 x+12$
- $y^2=36 x^5+8 x^4+7 x^3+55 x^2+16 x+6$
- $y^2=17 x^6+18 x^5+10 x^4+48 x^3+29 x^2+47 x$
- $y^2=12 x^6+5 x^5+62 x^4+12 x^3+24 x^2+4 x+17$
- $y^2=58 x^6+8 x^5+22 x^4+12 x^3+6 x^2+39 x+11$
- $y^2=51 x^6+56 x^5+12 x^4+13 x^3+42 x^2+60 x+6$
- $y^2=29 x^6+29 x^5+48 x^4+42 x^3+67 x^2+53 x+51$
- $y^2=16 x^6+45 x^5+38 x^4+13 x^3+25 x^2+69 x+23$
- $y^2=34 x^6+56 x^5+7 x^4+66 x^3+8 x^2+63 x+64$
- $y^2=47 x^6+31 x^5+42 x^4+44 x^3+32 x^2+35 x+28$
- $y^2=5 x^6+45 x^5+26 x^4+47 x^3+61 x^2+26 x+68$
- $y^2=35 x^6+31 x^5+40 x^4+45 x^3+x^2+40 x+50$
- $y^2=50 x^6+58 x^5+36 x^4+12 x^3+14 x^2+32 x+11$
- $y^2=16 x^6+56 x^5+43 x^4+54 x^3+22 x^2+65 x+68$
- $y^2=58 x^6+39 x^5+49 x^4+60 x^3+21 x^2+26 x+47$
- $y^2=3 x^6+26 x^5+22 x^4+7 x^3+46 x^2+48 x+48$
- $y^2=18 x^6+50 x^5+68 x^4+x^3+25 x^2+31 x+52$
- $y^2=27 x^6+10 x^5+25 x^4+51 x^3+33 x^2+64 x+31$
- $y^2=43 x^6+57 x^5+9 x^4+52 x^3+28 x^2+10 x+7$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.aq $\times$ 1.71.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.aek 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.