Invariants
Base field: | $\F_{11}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 11 x^{2} )^{2}$ |
$1 + 8 x + 38 x^{2} + 88 x^{3} + 121 x^{4}$ | |
Frobenius angles: | $\pm0.706037166300$, $\pm0.706037166300$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $256$ | $16384$ | $1597696$ | $220463104$ | $25913272576$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $134$ | $1196$ | $15054$ | $160900$ | $1767638$ | $19504540$ | $214332574$ | $2357861876$ | $25938057254$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=7 x^6+3 x^4+3 x^2+7$
- $y^2=3 x^6+4 x^4+4 x^2+3$
- $y^2=4 x^6+8 x^5+5 x^4+5 x^2+8 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$The isogeny class factors as 1.11.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.