Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 53 x^{2} )( 1 + 10 x + 53 x^{2} )$ |
$1 + 6 x^{2} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.259013587977$, $\pm0.740986412023$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $202$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2816$ | $7929856$ | $22164310784$ | $62347826692096$ | $174887470599201536$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2822$ | $148878$ | $7901646$ | $418195494$ | $22164260438$ | $1174711139838$ | $62259659655838$ | $3299763591802134$ | $174887470832890022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 202 curves (of which all are hyperelliptic):
- $y^2=13 x^6+45 x^5+36 x^4+51 x^2+49 x+16$
- $y^2=52 x^6+18 x^5+38 x^4+24 x^3+35 x^2+6 x+36$
- $y^2=51 x^6+36 x^5+23 x^4+48 x^3+17 x^2+12 x+19$
- $y^2=45 x^6+20 x^5+23 x^4+x^3+7 x^2+27 x+11$
- $y^2=13 x^6+16 x^5+3 x^4+51 x^3+x^2+28 x+1$
- $y^2=26 x^6+32 x^5+6 x^4+49 x^3+2 x^2+3 x+2$
- $y^2=49 x^6+47 x^5+29 x^4+9 x^3+12 x^2+25 x+27$
- $y^2=50 x^6+29 x^5+40 x^4+40 x^3+25 x^2+37 x+12$
- $y^2=47 x^6+5 x^5+27 x^4+27 x^3+50 x^2+21 x+24$
- $y^2=26 x^6+45 x^5+23 x^4+21 x^3+17 x^2+9 x+45$
- $y^2=52 x^6+37 x^5+46 x^4+42 x^3+34 x^2+18 x+37$
- $y^2=14 x^6+37 x^5+21 x^4+2 x^3+49 x^2+13 x+11$
- $y^2=42 x^6+7 x^5+3 x^4+25 x^3+42 x^2+10 x+34$
- $y^2=31 x^6+14 x^5+6 x^4+50 x^3+31 x^2+20 x+15$
- $y^2=50 x^6+x^5+9 x^4+43 x^3+51 x+7$
- $y^2=47 x^6+2 x^5+18 x^4+33 x^3+49 x+14$
- $y^2=23 x^6+10 x^5+9 x^4+23 x^3+48 x^2+36 x+28$
- $y^2=46 x^6+20 x^5+18 x^4+46 x^3+43 x^2+19 x+3$
- $y^2=18 x^6+23 x^5+3 x^4+18 x^3+45 x^2+39 x+51$
- $y^2=11 x^6+39 x^5+9 x^4+26 x^3+36 x^2+41 x+15$
- and 182 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ak $\times$ 1.53.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.