Properties

Label 4-740772-1.1-c1e2-0-9
Degree $4$
Conductor $740772$
Sign $-1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 3·4-s − 2·6-s − 4·8-s + 9-s + 3·12-s + 5·16-s − 2·18-s − 19-s − 4·24-s − 6·25-s + 27-s + 4·29-s − 6·32-s + 3·36-s + 2·38-s − 20·41-s + 8·43-s + 5·48-s − 14·49-s + 12·50-s + 20·53-s − 2·54-s − 57-s − 8·58-s − 24·59-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.816·6-s − 1.41·8-s + 1/3·9-s + 0.866·12-s + 5/4·16-s − 0.471·18-s − 0.229·19-s − 0.816·24-s − 6/5·25-s + 0.192·27-s + 0.742·29-s − 1.06·32-s + 1/2·36-s + 0.324·38-s − 3.12·41-s + 1.21·43-s + 0.721·48-s − 2·49-s + 1.69·50-s + 2.74·53-s − 0.272·54-s − 0.132·57-s − 1.05·58-s − 3.12·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( 1 - T \)
19$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.100143290691371559447654285071, −7.87114970877127535090362209983, −7.22153922721882802395635766156, −6.93381933813641935760483898363, −6.54324711643559493568388573046, −5.88087715977795198376928556594, −5.55712983394880976325928956483, −4.76383709193481805378371975040, −4.27229588770101457625379469521, −3.46272294158930356206920299963, −3.17802027729570401593965112053, −2.33039316998666771503145824429, −1.90797026202998636328713780462, −1.15871174429474862980802238748, 0, 1.15871174429474862980802238748, 1.90797026202998636328713780462, 2.33039316998666771503145824429, 3.17802027729570401593965112053, 3.46272294158930356206920299963, 4.27229588770101457625379469521, 4.76383709193481805378371975040, 5.55712983394880976325928956483, 5.88087715977795198376928556594, 6.54324711643559493568388573046, 6.93381933813641935760483898363, 7.22153922721882802395635766156, 7.87114970877127535090362209983, 8.100143290691371559447654285071

Graph of the $Z$-function along the critical line