Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$6400$ |
$26214400$ |
$127249158400$ |
$645956789862400$ |
$3255433535524000000$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$88$ |
$5198$ |
$355528$ |
$25419678$ |
$1804334648$ |
$128098873838$ |
$9095123963048$ |
$645753600924478$ |
$45848499890888728$ |
$3255243552683174798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 88 curves (of which all are hyperelliptic):
- $y^2=5 x^6+57 x^5+23 x^4+40 x^3+53 x^2+47 x+2$
- $y^2=13 x^6+16 x^5+62 x^4+8 x^3+54 x^2+36 x+10$
- $y^2=61 x^5+49 x^4+36 x^3+35 x^2+19 x+70$
- $y^2=52 x^6+69 x^5+67 x^4+22 x^3+67 x^2+69 x+52$
- $y^2=5 x^6+6 x^5+50 x^4+33 x^3+32 x^2+12 x+49$
- $y^2=8 x^6+50 x^5+48 x^4+49 x^3+45 x^2+9 x+12$
- $y^2=66 x^6+54 x^5+42 x^4+62 x^3+5 x^2+26 x+37$
- $y^2=12 x^6+69 x^5+68 x^4+14 x^3+68 x^2+69 x+12$
- $y^2=4 x^6+65 x^5+36 x^4+67 x^3+36 x^2+65 x+4$
- $y^2=18 x^6+62 x^5+52 x^4+49 x^3+47 x^2+5 x+15$
- $y^2=66 x^6+57 x^5+31 x^4+62 x^3+3 x^2+54 x+12$
- $y^2=52 x^6+44 x^5+51 x^4+62 x^3+51 x^2+44 x+52$
- $y^2=35 x^6+23 x^4+23 x^2+35$
- $y^2=19 x^6+4 x^5+65 x^4+51 x^3+65 x^2+4 x+19$
- $y^2=58 x^6+27 x^5+34 x^4+28 x^3+55 x^2+19 x+19$
- $y^2=13 x^6+29 x^5+70 x^4+27 x^3+21 x^2+9 x+23$
- $y^2=69 x^6+69 x^5+58 x^4+2 x^3+61 x^2+41 x+5$
- $y^2=5 x^6+2 x^5+39 x^4+28 x^3+x^2+4 x+1$
- $y^2=5 x^6+31 x^4+31 x^2+5$
- $y^2=43 x^6+56 x^5+55 x^4+23 x^3+9 x^2+23 x+53$
- and 68 more
- $y^2=60 x^6+46 x^5+30 x^4+37 x^3+30 x^2+46 x+60$
- $y^2=57 x^6+14 x^5+59 x^4+16 x^3+4 x^2+54 x+35$
- $y^2=37 x^6+32 x^5+21 x^4+3 x^3+67 x^2+48 x+60$
- $y^2=x^6+49 x^5+55 x^4+19 x^3+55 x^2+49 x+1$
- $y^2=11 x^6+24 x^4+24 x^2+11$
- $y^2=9 x^6+63 x^5+17 x^4+65 x^3+9 x^2+30 x+8$
- $y^2=5 x^6+58 x^5+14 x^4+69 x^3+56 x^2+5 x+36$
- $y^2=48 x^6+45 x^5+49 x^4+60 x^3+9 x^2+20 x+30$
- $y^2=4 x^6+68 x^5+55 x^4+x^3+29 x^2+49 x+16$
- $y^2=35 x^6+14 x^5+15 x^4+53 x^3+15 x^2+14 x+35$
- $y^2=37 x^6+17 x^5+43 x^4+38 x^3+40 x^2+26 x+54$
- $y^2=44 x^6+16 x^5+69 x^4+29 x^3+69 x^2+16 x+44$
- $y^2=60 x^6+39 x^5+48 x^4+60 x^3+37 x^2+36 x+1$
- $y^2=20 x^6+6 x^5+8 x^4+37 x^3+45 x^2+19 x+19$
- $y^2=16 x^6+68 x^5+51 x^4+67 x^3+19 x^2+42 x+26$
- $y^2=15 x^5+61 x^4+13 x^3+69 x^2+31 x+39$
- $y^2=53 x^6+32 x^5+18 x^4+59 x^3+18 x^2+32 x+53$
- $y^2=37 x^6+35 x^5+51 x^4+33 x^3+7 x^2+46 x+27$
- $y^2=23 x^6+45 x^5+45 x^4+44 x^3+16 x^2+12 x+17$
- $y^2=21 x^6+35 x^5+2 x^4+54 x^3+24 x^2+27 x+17$
- $y^2=53 x^5+69 x^4+15 x^3+38 x^2+35 x+10$
- $y^2=4 x^6+67 x^5+2 x^4+61 x^3+2 x^2+67 x+4$
- $y^2=56 x^6+13 x^5+45 x^4+37 x^3+54 x^2+67 x+11$
- $y^2=11 x^6+16 x^5+14 x^4+37 x^3+14 x^2+16 x+11$
- $y^2=3 x^6+31 x^5+61 x^4+54 x^3+61 x^2+31 x+3$
- $y^2=15 x^6+59 x^5+22 x^4+10 x^3+22 x^2+59 x+15$
- $y^2=50 x^6+47 x^5+63 x^4+14 x^3+63 x^2+47 x+50$
- $y^2=11 x^6+55 x^5+52 x^4+60 x^3+62 x^2+68 x+61$
- $y^2=40 x^6+5 x^5+41 x^4+53 x^3+49 x^2+28 x+14$
- $y^2=25 x^6+16 x^5+42 x^4+11 x^3+61 x^2+57 x+31$
- $y^2=53 x^6+4 x^4+4 x^2+53$
- $y^2=46 x^6+15 x^5+70 x^4+33 x^3+34 x^2+16 x+31$
- $y^2=47 x^6+35 x^5+7 x^4+x^3+70 x^2+21 x+69$
- $y^2=37 x^6+15 x^5+30 x^4+x^3+30 x^2+15 x+37$
- $y^2=67 x^6+12 x^5+5 x^4+44 x^3+62 x^2+56 x+38$
- $y^2=24 x^6+45 x^5+64 x^4+24 x^3+64 x^2+45 x+24$
- $y^2=42 x^6+59 x^4+59 x^2+42$
- $y^2=10 x^6+18 x^5+43 x^4+67 x^3+2 x^2+25 x+20$
- $y^2=66 x^6+10 x^4+10 x^2+66$
- $y^2=41 x^6+64 x^4+64 x^2+41$
- $y^2=35 x^6+49 x^5+2 x^4+54 x^3+2 x^2+49 x+35$
- $y^2=18 x^6+66 x^5+20 x^4+35 x^3+60 x^2+26 x+60$
- $y^2=59 x^6+68 x^4+68 x^2+59$
- $y^2=50 x^6+13 x^5+19 x^4+49 x^3+18 x^2+10 x+29$
- $y^2=24 x^6+13 x^5+11 x^4+23 x^3+28 x^2+59 x+30$
- $y^2=27 x^6+11 x^5+39 x^4+30 x^3+39 x^2+11 x+27$
- $y^2=5 x^6+5 x^5+68 x^4+8 x^3+18 x^2+63 x+56$
- $y^2=5 x^6+33 x^5+35 x^4+35 x^2+33 x+5$
- $y^2=21 x^6+41 x^5+19 x^4+32 x^3+19 x^2+41 x+21$
- $y^2=8 x^6+34 x^5+35 x^4+42 x^3+62 x^2+11 x+9$
- $y^2=60 x^6+46 x^5+20 x^4+37 x^3+20 x^2+46 x+60$
- $y^2=64 x^6+40 x^5+70 x^4+24 x^3+34 x^2+2 x+45$
- $y^2=59 x^6+47 x^5+46 x^4+35 x^3+68 x^2+56 x+63$
- $y^2=38 x^6+x^5+64 x^4+17 x^3+6 x^2+50 x+45$
- $y^2=47 x^6+10 x^5+28 x^4+15 x^3+28 x^2+10 x+47$
- $y^2=34 x^6+69 x^5+60 x^4+60 x^2+69 x+34$
- $y^2=10 x^6+59 x^5+39 x^4+61 x^3+34 x^2+63 x+58$
- $y^2=69 x^6+43 x^5+70 x^4+70 x^3+70 x^2+43 x+69$
- $y^2=19 x^6+27 x^5+56 x^4+11 x^3+56 x^2+27 x+19$
- $y^2=10 x^5+5 x^4+63 x^3+19 x^2+45 x$
- $y^2=22 x^6+70 x^5+55 x^4+20 x^3+55 x^2+70 x+22$
- $y^2=14 x^6+42 x^5+26 x^4+15 x^3+26 x^2+42 x+14$
- $y^2=62 x^6+66 x^5+7 x^4+65 x^3+51 x^2+7 x+35$
- $y^2=57 x^6+25 x^5+66 x^4+45 x^3+37 x^2+65 x+18$
- $y^2=7 x^5+59 x^4+41 x^3+26 x^2+23 x$
- $y^2=21 x^6+56 x^5+63 x^4+17 x^3+34 x^2+53 x+42$
- $y^2=25 x^6+60 x^5+61 x^4+65 x^3+3 x^2+31 x+1$
- $y^2=19 x^6+61 x^5+15 x^4+15 x^3+15 x^2+61 x+19$
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$
Base change
This is a primitive isogeny class.
Twists