# Properties

 Label 2.2.57.1-228.1-i Base field $$\Q(\sqrt{57})$$ Weight $[2, 2]$ Level norm $228$ Level $[228, 114, -4w + 2]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{57})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 14$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[228, 114, -4w + 2]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $42$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 4]$ $-1$
2 $[2, 2, -w - 3]$ $-1$
3 $[3, 3, -4w - 13]$ $\phantom{-}1$
7 $[7, 7, -2w - 7]$ $\phantom{-}0$
7 $[7, 7, -2w + 9]$ $\phantom{-}0$
19 $[19, 19, 10w + 33]$ $-1$
25 $[25, 5, 5]$ $-6$
29 $[29, 29, -6w - 19]$ $\phantom{-}2$
29 $[29, 29, -6w + 25]$ $\phantom{-}2$
41 $[41, 41, 2w - 5]$ $-10$
41 $[41, 41, -2w - 3]$ $-10$
43 $[43, 43, 2w - 11]$ $\phantom{-}4$
43 $[43, 43, 2w + 9]$ $\phantom{-}4$
53 $[53, 53, 2w - 3]$ $\phantom{-}10$
53 $[53, 53, -2w - 1]$ $\phantom{-}10$
59 $[59, 59, 4w - 15]$ $-12$
59 $[59, 59, 4w + 11]$ $-12$
61 $[61, 61, -4w - 15]$ $\phantom{-}14$
61 $[61, 61, -4w + 19]$ $\phantom{-}14$
71 $[71, 71, 8w + 25]$ $-8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 4]$ $1$
$2$ $[2, 2, -w - 3]$ $1$
$3$ $[3, 3, -4w - 13]$ $-1$
$19$ $[19, 19, 10w + 33]$ $1$