Properties

Label 2166.2.a.d
Level $2166$
Weight $2$
Character orbit 2166.a
Self dual yes
Analytic conductor $17.296$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2166,2,Mod(1,2166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2166 = 2 \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,1,1,2,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2955970778\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} - 2 q^{13} + 2 q^{15} + q^{16} - 6 q^{17} - q^{18} + 2 q^{20} + 4 q^{22} - 4 q^{23} - q^{24} - q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 2.00000 −1.00000 0 −1.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2166.2.a.d 1
3.b odd 2 1 6498.2.a.p 1
19.b odd 2 1 114.2.a.b 1
57.d even 2 1 342.2.a.b 1
76.d even 2 1 912.2.a.k 1
95.d odd 2 1 2850.2.a.j 1
95.g even 4 2 2850.2.d.b 2
133.c even 2 1 5586.2.a.y 1
152.b even 2 1 3648.2.a.c 1
152.g odd 2 1 3648.2.a.x 1
228.b odd 2 1 2736.2.a.d 1
285.b even 2 1 8550.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.a.b 1 19.b odd 2 1
342.2.a.b 1 57.d even 2 1
912.2.a.k 1 76.d even 2 1
2166.2.a.d 1 1.a even 1 1 trivial
2736.2.a.d 1 228.b odd 2 1
2850.2.a.j 1 95.d odd 2 1
2850.2.d.b 2 95.g even 4 2
3648.2.a.c 1 152.b even 2 1
3648.2.a.x 1 152.g odd 2 1
5586.2.a.y 1 133.c even 2 1
6498.2.a.p 1 3.b odd 2 1
8550.2.a.ba 1 285.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{29} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 10 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T - 10 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T - 4 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less