Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 53 x^{2} )^{2}$ |
| $1 - 20 x + 206 x^{2} - 1060 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.259013587977$, $\pm0.259013587977$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1936$ | $7929856$ | $22340683024$ | $62347826692096$ | $174908005203361936$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $2822$ | $150058$ | $7901646$ | $418244594$ | $22164260438$ | $1174707530618$ | $62259659655838$ | $3299763475535554$ | $174887470832890022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=27 x^6+35 x^5+10 x^4+14 x^3+22 x^2+21 x+33$
- $y^2=27 x^6+32 x^5+48 x^4+2 x^3+48 x^2+32 x+27$
- $y^2=3 x^6+52 x^5+2 x^4+27 x^3+2 x^2+52 x+3$
- $y^2=33 x^6+24 x^5+23 x^4+26 x^3+9 x^2+20 x+32$
- $y^2=3 x^6+46 x^4+46 x^2+3$
- $y^2=6 x^6+23 x^5+33 x^4+37 x^3+41 x^2+21 x+42$
- $y^2=12 x^6+35 x^5+45 x^3+9 x^2+43 x+35$
- $y^2=50 x^6+31 x^5+9 x^4+12 x^3+9 x^2+31 x+50$
- $y^2=24 x^6+46 x^5+46 x^4+23 x^3+10 x^2+34 x+50$
- $y^2=25 x^6+38 x^5+5 x^4+25 x^3+5 x^2+13 x+15$
- $y^2=31 x^6+20 x^4+20 x^2+31$
- $y^2=31 x^6+27 x^5+10 x^4+30 x^3+10 x^2+27 x+31$
- $y^2=41 x^6+34 x^5+32 x^4+25 x^3+39 x^2+21 x+20$
- $y^2=46 x^6+43 x^4+43 x^2+46$
- $y^2=35 x^6+39 x^5+49 x^4+41 x^3+49 x^2+39 x+35$
- $y^2=39 x^6+33 x^5+27 x^4+9 x^3+27 x^2+33 x+39$
- $y^2=44 x^6+34 x^5+31 x^4+14 x^3+31 x^2+34 x+44$
- $y^2=13 x^6+19 x^5+12 x^4+46 x^3+12 x^2+19 x+13$
- $y^2=5 x^6+44 x^4+44 x^2+5$
- $y^2=28 x^6+29 x^4+18 x^3+52 x^2+18 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.