sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740772, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1,740772))
         
     
    
  
   | Modulus: |  \(740772\) |   |  
   | Conductor: |  \(1\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(1\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   yes  |  
   | Primitive: |   no, induced from \(\chi_{1}(0,\cdot)\) |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{740772}(1,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((370387,192053,363529)\) → \((1,1,1)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |       
    
    
      | \( \chi_{ 740772 }(1, a) \) | 
      \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)