L(s) = 1 | − 3-s − 2·4-s + 9-s + 2·12-s + 4·16-s − 9·17-s + 3·25-s − 27-s − 2·36-s + 18·41-s − 7·43-s − 4·48-s − 49-s + 9·51-s + 9·59-s − 8·64-s − 4·67-s + 18·68-s − 6·73-s − 3·75-s + 81-s + 18·83-s − 18·89-s − 16·97-s − 6·100-s + 2·108-s + 18·113-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 4-s + 1/3·9-s + 0.577·12-s + 16-s − 2.18·17-s + 3/5·25-s − 0.192·27-s − 1/3·36-s + 2.81·41-s − 1.06·43-s − 0.577·48-s − 1/7·49-s + 1.26·51-s + 1.17·59-s − 64-s − 0.488·67-s + 2.18·68-s − 0.702·73-s − 0.346·75-s + 1/9·81-s + 1.97·83-s − 1.90·89-s − 1.62·97-s − 3/5·100-s + 0.192·108-s + 1.69·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.776097988690363705510521607652, −8.411146929023139563887313698570, −7.71945110340183076726344561285, −7.33191975228528584983233725083, −6.65903920200006821523628212497, −6.34229108058848973253610270711, −5.75512529549239908125466922624, −5.17803693126665852420544776293, −4.72820061187515833814845344481, −4.20604854645190587026047000299, −3.88557714032528253183161985938, −2.89834932942318755102183466602, −2.22042848217764147519013469949, −1.12343461867709982681313058631, 0,
1.12343461867709982681313058631, 2.22042848217764147519013469949, 2.89834932942318755102183466602, 3.88557714032528253183161985938, 4.20604854645190587026047000299, 4.72820061187515833814845344481, 5.17803693126665852420544776293, 5.75512529549239908125466922624, 6.34229108058848973253610270711, 6.65903920200006821523628212497, 7.33191975228528584983233725083, 7.71945110340183076726344561285, 8.411146929023139563887313698570, 8.776097988690363705510521607652