Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x^{2} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.260761911684$, $\pm0.739238088316$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{69}, \sqrt{-79})\) |
Galois group: | $C_2^2$ |
Jacobians: | $126$ |
Isomorphism classes: | 140 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1375$ | $1890625$ | $2565706000$ | $3522659765625$ | $4808584418419375$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1380$ | $50654$ | $1879588$ | $69343958$ | $2565685590$ | $94931877134$ | $3512472229828$ | $129961739795078$ | $4808584464420900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=31 x^6+21 x^5+2 x^4+2 x^3+3 x^2+35 x+8$
- $y^2=25 x^6+5 x^5+4 x^4+4 x^3+6 x^2+33 x+16$
- $y^2=22 x^6+11 x^5+19 x^4+15 x^3+24 x^2+31 x+17$
- $y^2=19 x^6+4 x^5+23 x^4+21 x^3+7 x^2+15 x+36$
- $y^2=x^6+8 x^5+9 x^4+5 x^3+14 x^2+30 x+35$
- $y^2=16 x^6+13 x^5+21 x^4+x^3+32 x^2+5 x+20$
- $y^2=32 x^6+26 x^5+5 x^4+2 x^3+27 x^2+10 x+3$
- $y^2=18 x^6+19 x^5+10 x^4+16 x^3+34 x^2+x+9$
- $y^2=23 x^6+22 x^5+11 x^4+20 x^3+33 x^2+30 x+30$
- $y^2=9 x^6+7 x^5+22 x^4+3 x^3+29 x^2+23 x+23$
- $y^2=12 x^6+14 x^5+36 x^4+13 x^3+9 x^2+30 x+1$
- $y^2=24 x^6+28 x^5+35 x^4+26 x^3+18 x^2+23 x+2$
- $y^2=15 x^6+8 x^5+21 x^4+4 x^3+36 x+25$
- $y^2=30 x^6+16 x^5+5 x^4+8 x^3+35 x+13$
- $y^2=27 x^6+x^5+14 x^4+32 x^3+3 x^2+14 x+23$
- $y^2=17 x^6+2 x^5+28 x^4+27 x^3+6 x^2+28 x+9$
- $y^2=29 x^6+29 x^5+14 x^4+22 x^3+16 x^2+36 x+7$
- $y^2=21 x^6+21 x^5+28 x^4+7 x^3+32 x^2+35 x+14$
- $y^2=29 x^6+8 x^5+32 x^4+20 x^3+14 x^2+3 x+16$
- $y^2=21 x^6+16 x^5+27 x^4+3 x^3+28 x^2+6 x+32$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{69}, \sqrt{-79})\). |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5451}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.a_af | $4$ | (not in LMFDB) |