Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 43 x^{2} )( 1 + 8 x + 43 x^{2} )$ |
$1 + 7 x + 78 x^{2} + 301 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.475705518658$, $\pm0.708828274828$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $112$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2236$ | $3622320$ | $6290288368$ | $11687125694400$ | $21609662232010996$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $51$ | $1957$ | $79116$ | $3418489$ | $146996061$ | $6321394294$ | $271820177295$ | $11688191183281$ | $502592566926228$ | $21611482808523157$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=41 x^6+x^5+42 x^4+22 x^3+8 x^2+18 x+23$
- $y^2=42 x^6+20 x^5+36 x^3+35 x^2+14 x+27$
- $y^2=35 x^6+32 x^5+19 x^4+14 x^3+28 x^2+15 x+28$
- $y^2=22 x^6+34 x^5+11 x^4+11 x^3+8 x^2+42 x+1$
- $y^2=8 x^6+6 x^5+12 x^4+41 x^3+15 x^2+22 x+6$
- $y^2=15 x^6+30 x^5+27 x^4+15 x^3+23 x^2+6 x+18$
- $y^2=17 x^6+35 x^5+34 x^4+9 x^3+18 x^2+27 x+14$
- $y^2=16 x^6+24 x^5+17 x^4+5 x^3+22 x^2+33 x+4$
- $y^2=4 x^6+23 x^5+22 x^4+21 x^3+38 x^2+5 x+26$
- $y^2=30 x^6+28 x^5+3 x^4+38 x^3+23 x^2+20 x$
- $y^2=36 x^6+19 x^5+12 x^4+15 x^3+15 x^2+35 x+27$
- $y^2=2 x^6+32 x^5+2 x^4+18 x^3+16 x^2+39 x+25$
- $y^2=20 x^6+22 x^5+38 x^4+16 x^3+4 x^2+8 x+8$
- $y^2=20 x^6+16 x^5+15 x^4+26 x^3+3 x^2+10 x$
- $y^2=41 x^6+24 x^5+13 x^4+2 x^3+14 x^2+33 x+8$
- $y^2=41 x^6+39 x^5+8 x^4+5 x^3+25 x+30$
- $y^2=13 x^6+20 x^5+22 x^4+30 x^3+16 x^2+37 x+3$
- $y^2=20 x^6+9 x^5+37 x^4+36 x^3+13 x^2+11 x+17$
- $y^2=x^6+15 x^5+25 x^4+24 x^3+6 x^2+2 x+13$
- $y^2=18 x^6+11 x^5+12 x^4+10 x^3+30 x^2+17 x+26$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ab $\times$ 1.43.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.