Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 67 x^{2} )( 1 + 11 x + 67 x^{2} )$ |
$1 + 4 x + 57 x^{2} + 268 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.359361632871$, $\pm0.734535271332$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $252$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4819$ | $20601225$ | $90513387952$ | $406280569451625$ | $1822706906761086379$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4588$ | $300948$ | $20161684$ | $1350028152$ | $90457678726$ | $6060716289000$ | $406067677489636$ | $27206534753351916$ | $1822837805029887868$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 252 curves (of which all are hyperelliptic):
- $y^2=22 x^6+59 x^5+29 x^4+21 x^3+36 x^2+24 x+59$
- $y^2=16 x^6+43 x^5+28 x^4+51 x^3+20 x^2+52 x+61$
- $y^2=51 x^6+15 x^5+55 x^4+26 x^3+15 x^2+12 x+45$
- $y^2=5 x^6+53 x^5+2 x^4+45 x^3+40 x^2+13 x+24$
- $y^2=62 x^6+42 x^5+44 x^4+14 x^3+24 x^2+53 x+11$
- $y^2=64 x^6+60 x^5+4 x^4+6 x^3+61 x^2+65 x+41$
- $y^2=47 x^6+57 x^5+39 x^4+18 x^3+63 x^2+34 x+39$
- $y^2=57 x^6+23 x^5+63 x^4+21 x^3+66 x^2+29 x+18$
- $y^2=49 x^6+35 x^5+21 x^4+6 x^3+58 x^2+31 x+65$
- $y^2=57 x^6+12 x^5+52 x^4+54 x^3+40 x^2+32 x+40$
- $y^2=59 x^6+32 x^5+17 x^4+37 x^3+18 x^2+57 x+19$
- $y^2=61 x^6+33 x^5+47 x^4+8 x^3+21 x^2+60 x+48$
- $y^2=65 x^6+4 x^5+25 x^3+49 x^2+27 x+25$
- $y^2=22 x^6+6 x^5+26 x^4+51 x^3+61 x^2+14 x+37$
- $y^2=38 x^6+21 x^5+52 x^4+61 x^3+26 x^2+52 x+59$
- $y^2=6 x^6+59 x^5+65 x^4+50 x^3+50 x^2+17 x+42$
- $y^2=9 x^6+60 x^5+37 x^4+52 x^3+28 x^2+9 x+31$
- $y^2=11 x^6+17 x^5+46 x^4+58 x^3+10 x^2+48 x+55$
- $y^2=62 x^6+25 x^5+52 x^4+20 x^3+x^2+53 x+48$
- $y^2=47 x^6+6 x^5+66 x^4+36 x^3+35 x^2+11 x+14$
- and 232 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ah $\times$ 1.67.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.