Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 43 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.316479212232$, $\pm0.683520787768$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{7}, \sqrt{-149})\) |
Galois group: | $C_2^2$ |
Jacobians: | $156$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2853$ | $8139609$ | $22164078276$ | $62319198851001$ | $174887471092299093$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2896$ | $148878$ | $7898020$ | $418195494$ | $22163795422$ | $1174711139838$ | $62259693562564$ | $3299763591802134$ | $174887471819085136$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=27 x^6+30 x^5+51 x^4+17 x^3+18 x^2+40 x+35$
- $y^2=x^6+7 x^5+49 x^4+34 x^3+36 x^2+27 x+17$
- $y^2=46 x^6+46 x^5+42 x^4+39 x^3+13 x^2+4 x+14$
- $y^2=39 x^6+39 x^5+31 x^4+25 x^3+26 x^2+8 x+28$
- $y^2=10 x^6+41 x^5+46 x^4+46 x^3+51 x^2+20 x+52$
- $y^2=20 x^6+29 x^5+39 x^4+39 x^3+49 x^2+40 x+51$
- $y^2=x^6+23 x^5+42 x^4+5 x^3+x^2+24 x+52$
- $y^2=2 x^6+46 x^5+31 x^4+10 x^3+2 x^2+48 x+51$
- $y^2=13 x^6+30 x^5+12 x^4+46 x^3+52 x^2+19 x+6$
- $y^2=26 x^6+7 x^5+24 x^4+39 x^3+51 x^2+38 x+12$
- $y^2=21 x^6+30 x^5+20 x^4+11 x^2+21 x+26$
- $y^2=42 x^6+7 x^5+40 x^4+22 x^2+42 x+52$
- $y^2=3 x^6+29 x^5+45 x^4+7 x^3+5 x^2+5 x+29$
- $y^2=6 x^6+5 x^5+37 x^4+14 x^3+10 x^2+10 x+5$
- $y^2=8 x^6+11 x^5+52 x^4+10 x^3+35 x^2+49 x+19$
- $y^2=16 x^6+22 x^5+51 x^4+20 x^3+17 x^2+45 x+38$
- $y^2=16 x^6+31 x^5+9 x^4+32 x^3+4 x^2+10 x+28$
- $y^2=32 x^6+9 x^5+18 x^4+11 x^3+8 x^2+20 x+3$
- $y^2=48 x^6+34 x^5+31 x^4+6 x^3+8 x^2+38 x+26$
- $y^2=43 x^6+15 x^5+9 x^4+12 x^3+16 x^2+23 x+52$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-149})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.br 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1043}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_abr | $4$ | (not in LMFDB) |