Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 33 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.307089993063$, $\pm0.692910006937$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{61}, \sqrt{-127})\) |
Galois group: | $C_2^2$ |
Jacobians: | $72$ |
Isomorphism classes: | 80 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2243$ | $5031049$ | $10779032576$ | $23843796426121$ | $52599132683188643$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2276$ | $103824$ | $4886340$ | $229345008$ | $10778849822$ | $506623120464$ | $23811284016004$ | $1119130473102768$ | $52599133130547236$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=12 x^6+40 x^5+5 x^4+23 x^3+22 x^2+15 x+46$
- $y^2=13 x^6+12 x^5+25 x^4+21 x^3+16 x^2+28 x+42$
- $y^2=26 x^6+27 x^5+33 x^4+45 x^3+4 x^2+3 x+32$
- $y^2=36 x^6+41 x^5+24 x^4+37 x^3+20 x^2+15 x+19$
- $y^2=x^6+5 x^5+38 x^4+42 x^3+42 x^2+37 x+45$
- $y^2=5 x^6+25 x^5+2 x^4+22 x^3+22 x^2+44 x+37$
- $y^2=34 x^6+x^5+40 x^4+40 x^3+13 x^2+30 x+15$
- $y^2=29 x^6+5 x^5+12 x^4+12 x^3+18 x^2+9 x+28$
- $y^2=21 x^6+19 x^5+36 x^4+24 x^3+43 x^2+13 x+5$
- $y^2=20 x^6+29 x^5+40 x^4+12 x^3+11 x^2+32$
- $y^2=6 x^6+4 x^5+12 x^4+13 x^3+8 x^2+19$
- $y^2=32 x^6+10 x^5+22 x^4+33 x^3+11 x^2+20 x+5$
- $y^2=19 x^6+3 x^5+16 x^4+24 x^3+8 x^2+6 x+25$
- $y^2=31 x^6+38 x^5+34 x^4+37 x^3+31 x^2+5 x+25$
- $y^2=46 x^6+14 x^5+8 x^4+30 x^3+18 x^2+x+13$
- $y^2=42 x^6+23 x^5+40 x^4+9 x^3+43 x^2+5 x+18$
- $y^2=24 x^6+40 x^5+35 x^4+45 x^3+17 x^2+16 x+7$
- $y^2=26 x^6+12 x^5+34 x^4+37 x^3+38 x^2+33 x+35$
- $y^2=43 x^6+13 x^5+29 x^4+20 x^3+46 x^2+26 x+5$
- $y^2=27 x^6+18 x^5+4 x^4+6 x^3+42 x^2+36 x+25$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{61}, \sqrt{-127})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.bh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7747}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.a_abh | $4$ | (not in LMFDB) |