-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2243, 'abvar_counts': [2243, 5031049, 10779032576, 23843796426121, 52599132683188643, 116187543274469195776, 256666986187069933799747, 566977309489704504151687689, 1252453015827222897676971367424, 2766668759023683694862473924181449], 'abvar_counts_str': '2243 5031049 10779032576 23843796426121 52599132683188643 116187543274469195776 256666986187069933799747 566977309489704504151687689 1252453015827222897676971367424 2766668759023683694862473924181449 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.307089993062766, 0.692910006937234], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 48, 'curve_counts': [48, 2276, 103824, 4886340, 229345008, 10778849822, 506623120464, 23811284016004, 1119130473102768, 52599133130547236], 'curve_counts_str': '48 2276 103824 4886340 229345008 10778849822 506623120464 23811284016004 1119130473102768 52599133130547236 ', 'curves': ['y^2=12*x^6+40*x^5+5*x^4+23*x^3+22*x^2+15*x+46', 'y^2=13*x^6+12*x^5+25*x^4+21*x^3+16*x^2+28*x+42', 'y^2=26*x^6+27*x^5+33*x^4+45*x^3+4*x^2+3*x+32', 'y^2=36*x^6+41*x^5+24*x^4+37*x^3+20*x^2+15*x+19', 'y^2=x^6+5*x^5+38*x^4+42*x^3+42*x^2+37*x+45', 'y^2=5*x^6+25*x^5+2*x^4+22*x^3+22*x^2+44*x+37', 'y^2=34*x^6+x^5+40*x^4+40*x^3+13*x^2+30*x+15', 'y^2=29*x^6+5*x^5+12*x^4+12*x^3+18*x^2+9*x+28', 'y^2=21*x^6+19*x^5+36*x^4+24*x^3+43*x^2+13*x+5', 'y^2=20*x^6+29*x^5+40*x^4+12*x^3+11*x^2+32', 'y^2=6*x^6+4*x^5+12*x^4+13*x^3+8*x^2+19', 'y^2=32*x^6+10*x^5+22*x^4+33*x^3+11*x^2+20*x+5', 'y^2=19*x^6+3*x^5+16*x^4+24*x^3+8*x^2+6*x+25', 'y^2=31*x^6+38*x^5+34*x^4+37*x^3+31*x^2+5*x+25', 'y^2=46*x^6+14*x^5+8*x^4+30*x^3+18*x^2+x+13', 'y^2=42*x^6+23*x^5+40*x^4+9*x^3+43*x^2+5*x+18', 'y^2=24*x^6+40*x^5+35*x^4+45*x^3+17*x^2+16*x+7', 'y^2=26*x^6+12*x^5+34*x^4+37*x^3+38*x^2+33*x+35', 'y^2=43*x^6+13*x^5+29*x^4+20*x^3+46*x^2+26*x+5', 'y^2=27*x^6+18*x^5+4*x^4+6*x^3+42*x^2+36*x+25', 'y^2=43*x^6+29*x^5+11*x^4+6*x^3+18*x^2+19*x+24', 'y^2=38*x^6+39*x^5+15*x^4+14*x^3+43*x^2+13*x+5', 'y^2=2*x^6+7*x^5+28*x^4+23*x^3+27*x^2+18*x+25', 'y^2=4*x^6+27*x^5+30*x^4+28*x^3+20*x^2+29*x+25', 'y^2=20*x^6+41*x^5+9*x^4+46*x^3+6*x^2+4*x+31', 'y^2=x^6+9*x^5+33*x^4+3*x^3+42*x^2+34*x+20', 'y^2=2*x^6+23*x^5+38*x^4+40*x^3+46*x^2+33*x+39', 'y^2=10*x^6+21*x^5+2*x^4+12*x^3+42*x^2+24*x+7', 'y^2=28*x^6+10*x^5+25*x^4+35*x^3+11*x^2+21*x+42', 'y^2=46*x^6+3*x^5+31*x^4+34*x^3+8*x^2+11*x+22', 'y^2=30*x^6+3*x^5+3*x^4+16*x^3+x^2+7*x+36', 'y^2=9*x^6+15*x^5+15*x^4+33*x^3+5*x^2+35*x+39', 'y^2=43*x^6+37*x^5+42*x^4+8*x^3+24*x^2+28*x+10', 'y^2=27*x^6+44*x^5+22*x^4+40*x^3+26*x^2+46*x+3', 'y^2=29*x^6+25*x^5+15*x^4+5*x^3+16*x^2+18*x+14', 'y^2=23*x^6+10*x^5+37*x^4+3*x^3+18*x^2+32*x+34', 'y^2=21*x^6+3*x^5+44*x^4+15*x^3+43*x^2+19*x+29', 'y^2=9*x^6+2*x^5+16*x^4+26*x^3+33*x^2+35*x+39', 'y^2=45*x^6+10*x^5+33*x^4+36*x^3+24*x^2+34*x+7', 'y^2=9*x^6+41*x^5+21*x^4+17*x^3+6*x^2+15*x+4', 'y^2=45*x^6+17*x^5+11*x^4+38*x^3+30*x^2+28*x+20', 'y^2=3*x^6+11*x^5+29*x^4+34*x^3+2*x^2+10*x+41', 'y^2=41*x^6+6*x^5+45*x^4+16*x^3+15*x^2+27*x+24', 'y^2=17*x^6+30*x^5+37*x^4+33*x^3+28*x^2+41*x+26', 'y^2=9*x^6+2*x^4+22*x^3+23*x^2+36*x+37', 'y^2=45*x^6+10*x^4+16*x^3+21*x^2+39*x+44', 'y^2=4*x^6+30*x^5+34*x^4+30*x^3+37*x^2+32*x+23', 'y^2=20*x^6+9*x^5+29*x^4+9*x^3+44*x^2+19*x+21', 'y^2=41*x^6+27*x^5+33*x^4+28*x^3+12*x^2+16*x+12', 'y^2=6*x^6+41*x^5+40*x^4+24*x^3+25*x^2+5*x+38', 'y^2=14*x^6+29*x^5+33*x^4+28*x^3+44*x^2+16*x+11', 'y^2=23*x^6+4*x^5+24*x^4+46*x^3+32*x^2+33*x+8', 'y^2=6*x^6+31*x^5+32*x^4+14*x^3+3*x^2+14*x+38', 'y^2=30*x^6+14*x^5+19*x^4+23*x^3+15*x^2+23*x+2', 'y^2=37*x^6+20*x^5+46*x^4+15*x^3+30*x^2+28*x+25', 'y^2=44*x^6+6*x^5+42*x^4+28*x^3+9*x^2+46*x+31', 'y^2=2*x^6+44*x^5+13*x^4+25*x^3+16*x^2+18*x+17', 'y^2=10*x^6+32*x^5+18*x^4+31*x^3+33*x^2+43*x+38', 'y^2=28*x^6+33*x^5+37*x^4+21*x^3+28*x^2+30', 'y^2=46*x^6+24*x^5+44*x^4+11*x^3+46*x^2+9', 'y^2=18*x^6+27*x^5+14*x^4+8*x^3+22*x^2+14*x+46', 'y^2=43*x^6+41*x^5+23*x^4+40*x^3+16*x^2+23*x+42', 'y^2=24*x^6+34*x^5+22*x^4+46*x^3+46*x^2+2*x+29', 'y^2=26*x^6+29*x^5+16*x^4+42*x^3+42*x^2+10*x+4', 'y^2=37*x^6+33*x^5+30*x^4+7*x^2+23*x+34', 'y^2=44*x^6+24*x^5+9*x^4+35*x^2+21*x+29', 'y^2=42*x^6+32*x^5+35*x^4+13*x^3+18*x^2+16*x+31', 'y^2=22*x^6+19*x^5+34*x^4+18*x^3+43*x^2+33*x+14', 'y^2=43*x^6+33*x^5+38*x^4+42*x^3+7*x^2+10*x+30', 'y^2=27*x^6+24*x^5+2*x^4+22*x^3+35*x^2+3*x+9', 'y^2=24*x^6+23*x^5+18*x^4+x^3+41*x^2+29*x+29', 'y^2=26*x^6+21*x^5+43*x^4+5*x^3+17*x^2+4*x+4'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.7747.1'], 'geometric_splitting_field': '2.0.7747.1', 'geometric_splitting_polynomials': [[1937, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.47.a_bh', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.60016009.2'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 13, 1, 20], [1, 19, 1, 40]], 'poly': [1, 0, 33, 0, 2209], 'poly_str': '1 0 33 0 2209 ', 'primitive_models': [], 'principal_polarization_count': 80, 'q': 47, 'real_poly': [1, 0, -61], 'simple_distinct': ['2.47.a_bh'], 'simple_factors': ['2.47.a_bhA'], 'simple_multiplicities': [1], 'singular_primes': ['2,3*F^2+F+4*V-1'], 'size': 80, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.60016009.2', 'splitting_polynomials': [[2209, 0, 33, 0, 1]], 'twist_count': 2, 'twists': [['2.47.a_abh', '2.4879681.jwc_btpuud', 4]], 'weak_equivalence_count': 2, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 40, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 16129, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,3*F^2+F+4*V-1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 35362
{'base_label': '2.47.a_bh', 'extension_degree': 1, 'extension_label': '2.47.a_bh', 'multiplicity': 1}
-
id: 35363
{'base_label': '2.47.a_bh', 'extension_degree': 2, 'extension_label': '1.2209.bh', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.60016009.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.47.a_bh', 'galois_group': '4T2', 'places': [['11', '46', '1', '0'], ['8', '46', '1', '0'], ['25', '174/47', '1', '1/47'], ['13', '607/47', '42', '7/47']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.7747.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2209.bh', 'galois_group': '2T1', 'places': [['16', '1'], ['30', '1']]}