# Stored data for abelian variety isogeny class 2.47.a_bh, downloaded from the LMFDB on 26 September 2025. {"abvar_count": 2243, "abvar_counts": [2243, 5031049, 10779032576, 23843796426121, 52599132683188643, 116187543274469195776, 256666986187069933799747, 566977309489704504151687689, 1252453015827222897676971367424, 2766668759023683694862473924181449], "abvar_counts_str": "2243 5031049 10779032576 23843796426121 52599132683188643 116187543274469195776 256666986187069933799747 566977309489704504151687689 1252453015827222897676971367424 2766668759023683694862473924181449 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.307089993062766, 0.692910006937234], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2276, 103824, 4886340, 229345008, 10778849822, 506623120464, 23811284016004, 1119130473102768, 52599133130547236], "curve_counts_str": "48 2276 103824 4886340 229345008 10778849822 506623120464 23811284016004 1119130473102768 52599133130547236 ", "curves": ["y^2=12*x^6+40*x^5+5*x^4+23*x^3+22*x^2+15*x+46", "y^2=13*x^6+12*x^5+25*x^4+21*x^3+16*x^2+28*x+42", "y^2=26*x^6+27*x^5+33*x^4+45*x^3+4*x^2+3*x+32", "y^2=36*x^6+41*x^5+24*x^4+37*x^3+20*x^2+15*x+19", "y^2=x^6+5*x^5+38*x^4+42*x^3+42*x^2+37*x+45", "y^2=5*x^6+25*x^5+2*x^4+22*x^3+22*x^2+44*x+37", "y^2=34*x^6+x^5+40*x^4+40*x^3+13*x^2+30*x+15", "y^2=29*x^6+5*x^5+12*x^4+12*x^3+18*x^2+9*x+28", "y^2=21*x^6+19*x^5+36*x^4+24*x^3+43*x^2+13*x+5", "y^2=20*x^6+29*x^5+40*x^4+12*x^3+11*x^2+32", "y^2=6*x^6+4*x^5+12*x^4+13*x^3+8*x^2+19", "y^2=32*x^6+10*x^5+22*x^4+33*x^3+11*x^2+20*x+5", "y^2=19*x^6+3*x^5+16*x^4+24*x^3+8*x^2+6*x+25", "y^2=31*x^6+38*x^5+34*x^4+37*x^3+31*x^2+5*x+25", "y^2=46*x^6+14*x^5+8*x^4+30*x^3+18*x^2+x+13", "y^2=42*x^6+23*x^5+40*x^4+9*x^3+43*x^2+5*x+18", "y^2=24*x^6+40*x^5+35*x^4+45*x^3+17*x^2+16*x+7", "y^2=26*x^6+12*x^5+34*x^4+37*x^3+38*x^2+33*x+35", "y^2=43*x^6+13*x^5+29*x^4+20*x^3+46*x^2+26*x+5", "y^2=27*x^6+18*x^5+4*x^4+6*x^3+42*x^2+36*x+25", "y^2=43*x^6+29*x^5+11*x^4+6*x^3+18*x^2+19*x+24", "y^2=38*x^6+39*x^5+15*x^4+14*x^3+43*x^2+13*x+5", "y^2=2*x^6+7*x^5+28*x^4+23*x^3+27*x^2+18*x+25", "y^2=4*x^6+27*x^5+30*x^4+28*x^3+20*x^2+29*x+25", "y^2=20*x^6+41*x^5+9*x^4+46*x^3+6*x^2+4*x+31", "y^2=x^6+9*x^5+33*x^4+3*x^3+42*x^2+34*x+20", "y^2=2*x^6+23*x^5+38*x^4+40*x^3+46*x^2+33*x+39", "y^2=10*x^6+21*x^5+2*x^4+12*x^3+42*x^2+24*x+7", "y^2=28*x^6+10*x^5+25*x^4+35*x^3+11*x^2+21*x+42", "y^2=46*x^6+3*x^5+31*x^4+34*x^3+8*x^2+11*x+22", "y^2=30*x^6+3*x^5+3*x^4+16*x^3+x^2+7*x+36", "y^2=9*x^6+15*x^5+15*x^4+33*x^3+5*x^2+35*x+39", "y^2=43*x^6+37*x^5+42*x^4+8*x^3+24*x^2+28*x+10", "y^2=27*x^6+44*x^5+22*x^4+40*x^3+26*x^2+46*x+3", "y^2=29*x^6+25*x^5+15*x^4+5*x^3+16*x^2+18*x+14", "y^2=23*x^6+10*x^5+37*x^4+3*x^3+18*x^2+32*x+34", "y^2=21*x^6+3*x^5+44*x^4+15*x^3+43*x^2+19*x+29", "y^2=9*x^6+2*x^5+16*x^4+26*x^3+33*x^2+35*x+39", "y^2=45*x^6+10*x^5+33*x^4+36*x^3+24*x^2+34*x+7", "y^2=9*x^6+41*x^5+21*x^4+17*x^3+6*x^2+15*x+4", "y^2=45*x^6+17*x^5+11*x^4+38*x^3+30*x^2+28*x+20", "y^2=3*x^6+11*x^5+29*x^4+34*x^3+2*x^2+10*x+41", "y^2=41*x^6+6*x^5+45*x^4+16*x^3+15*x^2+27*x+24", "y^2=17*x^6+30*x^5+37*x^4+33*x^3+28*x^2+41*x+26", "y^2=9*x^6+2*x^4+22*x^3+23*x^2+36*x+37", "y^2=45*x^6+10*x^4+16*x^3+21*x^2+39*x+44", "y^2=4*x^6+30*x^5+34*x^4+30*x^3+37*x^2+32*x+23", "y^2=20*x^6+9*x^5+29*x^4+9*x^3+44*x^2+19*x+21", "y^2=41*x^6+27*x^5+33*x^4+28*x^3+12*x^2+16*x+12", "y^2=6*x^6+41*x^5+40*x^4+24*x^3+25*x^2+5*x+38", "y^2=14*x^6+29*x^5+33*x^4+28*x^3+44*x^2+16*x+11", "y^2=23*x^6+4*x^5+24*x^4+46*x^3+32*x^2+33*x+8", "y^2=6*x^6+31*x^5+32*x^4+14*x^3+3*x^2+14*x+38", "y^2=30*x^6+14*x^5+19*x^4+23*x^3+15*x^2+23*x+2", "y^2=37*x^6+20*x^5+46*x^4+15*x^3+30*x^2+28*x+25", "y^2=44*x^6+6*x^5+42*x^4+28*x^3+9*x^2+46*x+31", "y^2=2*x^6+44*x^5+13*x^4+25*x^3+16*x^2+18*x+17", "y^2=10*x^6+32*x^5+18*x^4+31*x^3+33*x^2+43*x+38", "y^2=28*x^6+33*x^5+37*x^4+21*x^3+28*x^2+30", "y^2=46*x^6+24*x^5+44*x^4+11*x^3+46*x^2+9", "y^2=18*x^6+27*x^5+14*x^4+8*x^3+22*x^2+14*x+46", "y^2=43*x^6+41*x^5+23*x^4+40*x^3+16*x^2+23*x+42", "y^2=24*x^6+34*x^5+22*x^4+46*x^3+46*x^2+2*x+29", "y^2=26*x^6+29*x^5+16*x^4+42*x^3+42*x^2+10*x+4", "y^2=37*x^6+33*x^5+30*x^4+7*x^2+23*x+34", "y^2=44*x^6+24*x^5+9*x^4+35*x^2+21*x+29", "y^2=42*x^6+32*x^5+35*x^4+13*x^3+18*x^2+16*x+31", "y^2=22*x^6+19*x^5+34*x^4+18*x^3+43*x^2+33*x+14", "y^2=43*x^6+33*x^5+38*x^4+42*x^3+7*x^2+10*x+30", "y^2=27*x^6+24*x^5+2*x^4+22*x^3+35*x^2+3*x+9", "y^2=24*x^6+23*x^5+18*x^4+x^3+41*x^2+29*x+29", "y^2=26*x^6+21*x^5+43*x^4+5*x^3+17*x^2+4*x+4"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.7747.1"], "geometric_splitting_field": "2.0.7747.1", "geometric_splitting_polynomials": [[1937, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.47.a_bh", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.60016009.2"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 13, 1, 20], [1, 19, 1, 40]], "poly": [1, 0, 33, 0, 2209], "poly_str": "1 0 33 0 2209 ", "primitive_models": [], "principal_polarization_count": 80, "q": 47, "real_poly": [1, 0, -61], "simple_distinct": ["2.47.a_bh"], "simple_factors": ["2.47.a_bhA"], "simple_multiplicities": [1], "singular_primes": ["2,3*F^2+F+4*V-1"], "size": 80, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.60016009.2", "splitting_polynomials": [[2209, 0, 33, 0, 1]], "twist_count": 2, "twists": [["2.47.a_abh", "2.4879681.jwc_btpuud", 4]], "weak_equivalence_count": 2, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 40, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 16129, "zfv_singular_count": 2, "zfv_singular_primes": ["2,3*F^2+F+4*V-1"]}