Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 53 x^{2} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.304443003055$, $\pm0.695556996945$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{105}, \sqrt{-211})\) |
Galois group: | $C_2^2$ |
Jacobians: | $176$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6295$ | $39627025$ | $243086612080$ | $1517862509660025$ | $9468276088721107375$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6348$ | $493040$ | $38969428$ | $3077056400$ | $243085768638$ | $19203908986160$ | $1517108778573028$ | $119851595982618320$ | $9468276094815367548$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 176 curves (of which all are hyperelliptic):
- $y^2=57 x^6+30 x^5+10 x^4+68 x^3+19 x^2+38 x+36$
- $y^2=13 x^6+11 x^5+30 x^4+46 x^3+57 x^2+35 x+29$
- $y^2=4 x^6+28 x^5+23 x^4+18 x^3+35 x^2+6 x+70$
- $y^2=38 x^6+66 x^5+23 x^4+16 x^3+29 x^2+65 x+35$
- $y^2=35 x^6+40 x^5+69 x^4+48 x^3+8 x^2+37 x+26$
- $y^2=19 x^6+66 x^5+19 x^4+75 x^3+20 x^2+58 x+65$
- $y^2=57 x^6+40 x^5+57 x^4+67 x^3+60 x^2+16 x+37$
- $y^2=56 x^6+40 x^5+34 x^4+40 x^3+22 x^2+64 x+51$
- $y^2=10 x^6+41 x^5+23 x^4+41 x^3+66 x^2+34 x+74$
- $y^2=24 x^6+58 x^5+23 x^4+8 x^3+27 x^2+37 x+22$
- $y^2=72 x^6+16 x^5+69 x^4+24 x^3+2 x^2+32 x+66$
- $y^2=5 x^6+38 x^5+5 x^4+11 x^3+63 x^2+60 x+2$
- $y^2=15 x^6+35 x^5+15 x^4+33 x^3+31 x^2+22 x+6$
- $y^2=49 x^6+x^5+60 x^4+67 x^3+77 x^2+69 x+28$
- $y^2=68 x^6+3 x^5+22 x^4+43 x^3+73 x^2+49 x+5$
- $y^2=7 x^6+60 x^5+12 x^4+76 x^3+13 x^2+24 x+44$
- $y^2=21 x^6+22 x^5+36 x^4+70 x^3+39 x^2+72 x+53$
- $y^2=54 x^6+55 x^5+52 x^4+4 x^3+38 x^2+31 x+47$
- $y^2=4 x^6+7 x^5+77 x^4+12 x^3+35 x^2+14 x+62$
- $y^2=42 x^6+64 x^5+54 x^4+7 x^3+51 x^2+56 x+34$
- and 156 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{105}, \sqrt{-211})\). |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.cb 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22155}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.a_acb | $4$ | (not in LMFDB) |