Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$5625$ |
$48650625$ |
$328672890000$ |
$2252914358765625$ |
$15515517157419515625$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$66$ |
$7060$ |
$574812$ |
$47471428$ |
$3938907606$ |
$326938088230$ |
$27136041465522$ |
$2252292336088708$ |
$186940256993588196$ |
$15516041194112461300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 98 curves (of which all are hyperelliptic):
- $y^2=80 x^6+76 x^5+57 x^4+50 x^3+57 x^2+76 x+80$
- $y^2=39 x^6+7 x^5+30 x^4+44 x^3+30 x^2+7 x+39$
- $y^2=74 x^6+62 x^5+29 x^4+78 x^3+29 x^2+62 x+74$
- $y^2=54 x^6+19 x^5+59 x^4+50 x^3+27 x^2+2 x+40$
- $y^2=62 x^6+41 x^5+10 x^4+65 x^3+73 x^2+19 x+77$
- $y^2=24 x^6+75 x^5+38 x^4+73 x^3+66 x^2+61 x+60$
- $y^2=36 x^6+11 x^5+58 x^4+77 x^3+58 x^2+11 x+36$
- $y^2=20 x^6+37 x^5+10 x^4+70 x^3+40 x^2+11 x+35$
- $y^2=66 x^6+13 x^5+6 x^4+43 x^3+6 x^2+13 x+66$
- $y^2=82 x^6+58 x^5+7 x^4+2 x^3+38 x^2+66 x+54$
- $y^2=22 x^6+10 x^5+41 x^4+5 x^3+41 x^2+10 x+22$
- $y^2=52 x^6+16 x^5+51 x^4+12 x^3+51 x^2+16 x+52$
- $y^2=13 x^6+78 x^5+36 x^4+46 x^3+36 x^2+78 x+13$
- $y^2=4 x^6+59 x^5+77 x^4+52 x^3+74 x^2+31 x+47$
- $y^2=79 x^6+57 x^5+14 x^4+82 x^3+29 x^2+7 x+77$
- $y^2=3 x^6+18 x^5+67 x^4+69 x^2+41 x+23$
- $y^2=16 x^6+25 x^5+45 x^4+42 x^3+65 x^2+17 x+16$
- $y^2=76 x^6+37 x^5+53 x^4+76 x^3+53 x^2+37 x+76$
- $y^2=46 x^6+37 x^5+23 x^4+16 x^3+23 x^2+37 x+46$
- $y^2=6 x^6+82 x^5+67 x^4+45 x^3+67 x^2+82 x+6$
- and 78 more
- $y^2=45 x^6+x^5+39 x^4+26 x^3+39 x^2+x+45$
- $y^2=53 x^6+76 x^5+17 x^4+54 x^3+12 x^2+2 x+22$
- $y^2=50 x^6+44 x^5+72 x^4+34 x^3+54 x^2+4 x+60$
- $y^2=40 x^6+43 x^5+53 x^4+62 x^3+60 x^2+19 x+59$
- $y^2=64 x^6+13 x^5+19 x^4+11 x^3+19 x^2+13 x+64$
- $y^2=50 x^6+75 x^5+31 x^4+55 x^3+31 x^2+75 x+50$
- $y^2=58 x^6+79 x^5+69 x^4+79 x^3+69 x^2+79 x+58$
- $y^2=74 x^6+35 x^5+66 x^4+22 x^3+77 x^2+40 x+78$
- $y^2=56 x^6+10 x^5+8 x^4+24 x^3+8 x^2+10 x+56$
- $y^2=56 x^6+37 x^5+2 x^4+29 x^3+14 x^2+18 x+79$
- $y^2=82 x^6+64 x^5+18 x^4+30 x^3+18 x^2+64 x+82$
- $y^2=2 x^6+20 x^5+8 x^4+10 x^3+8 x^2+20 x+2$
- $y^2=15 x^6+40 x^5+12 x^4+44 x^3+12 x^2+40 x+15$
- $y^2=68 x^6+57 x^5+53 x^4+25 x^3+44 x^2+6 x+77$
- $y^2=10 x^6+74 x^5+31 x^4+73 x^3+31 x^2+74 x+10$
- $y^2=73 x^6+73 x^5+62 x^4+5 x^3+62 x^2+73 x+73$
- $y^2=75 x^6+64 x^5+3 x^4+14 x^3+3 x^2+64 x+75$
- $y^2=14 x^6+73 x^5+39 x^4+52 x^3+82 x^2+51 x+25$
- $y^2=59 x^6+64 x^5+28 x^4+48 x^3+28 x^2+64 x+59$
- $y^2=40 x^6+43 x^5+2 x^4+20 x^3+8 x^2+x+73$
- $y^2=x^6+51 x^5+8 x^4+77 x^3+8 x^2+51 x+1$
- $y^2=48 x^6+76 x^5+13 x^4+81 x^3+13 x^2+76 x+48$
- $y^2=49 x^6+60 x^5+25 x^4+x^3+25 x^2+60 x+49$
- $y^2=36 x^6+22 x^5+79 x^4+25 x^3+50 x^2+51 x+68$
- $y^2=35 x^6+52 x^5+50 x^4+19 x^3+50 x^2+52 x+35$
- $y^2=4 x^6+78 x^5+33 x^4+4 x^3+33 x^2+78 x+4$
- $y^2=7 x^6+47 x^5+32 x^4+26 x^3+32 x^2+47 x+7$
- $y^2=68 x^6+46 x^5+40 x^4+2 x^3+40 x^2+46 x+68$
- $y^2=47 x^6+59 x^5+18 x^4+14 x^3+18 x^2+59 x+47$
- $y^2=20 x^6+27 x^5+23 x^4+54 x^3+49 x^2+37 x+19$
- $y^2=7 x^6+33 x^5+59 x^4+79 x^3+23 x^2+61 x+16$
- $y^2=47 x^6+66 x^5+68 x^4+37 x^3+68 x^2+66 x+47$
- $y^2=16 x^6+13 x^5+80 x^4+25 x^3+80 x^2+13 x+16$
- $y^2=70 x^6+67 x^5+35 x^4+22 x^3+49 x+30$
- $y^2=19 x^6+49 x^5+36 x^4+45 x^3+81 x^2+25 x+18$
- $y^2=21 x^6+38 x^5+25 x^4+50 x^3+25 x^2+38 x+21$
- $y^2=33 x^6+46 x^5+11 x^4+62 x^3+11 x^2+46 x+33$
- $y^2=45 x^6+61 x^5+35 x^4+37 x^3+13 x^2+17 x+78$
- $y^2=74 x^6+66 x^5+79 x^4+65 x^3+79 x^2+66 x+74$
- $y^2=4 x^6+76 x^5+76 x^4+48 x^3+76 x^2+76 x+4$
- $y^2=15 x^6+41 x^5+67 x^4+68 x^3+67 x^2+41 x+15$
- $y^2=52 x^6+13 x^5+24 x^4+49 x^3+14 x^2+5 x+67$
- $y^2=52 x^6+40 x^5+6 x^4+64 x^3+6 x^2+40 x+52$
- $y^2=47 x^6+30 x^5+22 x^4+68 x^3+16 x^2+17 x+32$
- $y^2=82 x^6+14 x^5+7 x^4+3 x^3+x^2+24 x+6$
- $y^2=45 x^6+79 x^5+56 x^4+66 x^3+40 x^2+59 x+77$
- $y^2=80 x^6+25 x^5+81 x^4+4 x^3+81 x^2+25 x+80$
- $y^2=67 x^6+54 x^5+18 x^4+37 x^3+18 x^2+54 x+67$
- $y^2=56 x^6+57 x^5+41 x^4+76 x^3+41 x^2+57 x+56$
- $y^2=51 x^6+29 x^5+5 x^4+49 x^3+68 x^2+38 x+54$
- $y^2=14 x^6+75 x^5+61 x^4+74 x^3+38 x^2+7 x+57$
- $y^2=48 x^6+70 x^5+29 x^4+63 x^3+79 x^2+78 x+56$
- $y^2=33 x^6+78 x^5+46 x^4+52 x^3+46 x^2+78 x+33$
- $y^2=80 x^6+24 x^5+3 x^4+42 x^3+3 x^2+24 x+80$
- $y^2=78 x^6+2 x^5+22 x^4+64 x^3+22 x^2+2 x+78$
- $y^2=11 x^6+22 x^5+44 x^4+4 x^3+44 x^2+22 x+11$
- $y^2=41 x^6+48 x^5+10 x^4+48 x^3+10 x^2+48 x+41$
- $y^2=6 x^6+19 x^5+6 x^4+72 x^3+6 x^2+19 x+6$
- $y^2=31 x^6+28 x^5+78 x^4+46 x^3+78 x^2+28 x+31$
- $y^2=3 x^6+57 x^5+73 x^4+37 x^3+53 x^2+26 x+34$
- $y^2=22 x^6+37 x^5+45 x^4+52 x^3+45 x^2+37 x+22$
- $y^2=75 x^6+61 x^5+47 x^4+65 x^3+47 x^2+61 x+75$
- $y^2=x^6+8 x^5+75 x^4+50 x^3+75 x^2+8 x+1$
- $y^2=2 x^6+49 x^5+54 x^4+71 x^3+54 x^2+49 x+2$
- $y^2=14 x^6+74 x^5+2 x^4+22 x^3+52 x^2+20 x+57$
- $y^2=14 x^6+28 x^5+69 x^4+73 x^3+69 x^2+28 x+14$
- $y^2=36 x^6+19 x^5+73 x^4+69 x^3+73 x^2+19 x+36$
- $y^2=57 x^6+22 x^5+67 x^4+65 x^3+67 x^2+22 x+57$
- $y^2=13 x^6+59 x^5+11 x^4+32 x^3+11 x^2+59 x+13$
- $y^2=57 x^6+39 x^5+42 x^4+55 x^3+42 x^2+39 x+57$
- $y^2=73 x^6+49 x^5+31 x^4+44 x^3+53 x^2+40 x+36$
- $y^2=20 x^6+8 x^5+32 x^4+10 x^3+32 x^2+8 x+20$
- $y^2=82 x^6+67 x^5+69 x^4+45 x^3+69 x^2+67 x+82$
- $y^2=57 x^6+9 x^5+26 x^4+5 x^3+26 x^2+9 x+57$
- $y^2=56 x^6+59 x^5+33 x^4+79 x^3+50 x^2+23 x+77$
- $y^2=59 x^6+64 x^5+12 x^4+13 x^3+12 x^2+64 x+59$
- $y^2=58 x^6+40 x^5+16 x^4+46 x^3+16 x^2+40 x+58$
- $y^2=32 x^6+52 x^5+67 x^4+13 x^3+67 x^2+52 x+32$
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$
Base change
This is a primitive isogeny class.
Twists