Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 5 x + 89 x^{2} )( 1 + 13 x + 89 x^{2} )$ |
$1 + 18 x + 243 x^{2} + 1602 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.585371785029$, $\pm0.741949407251$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $72$ |
Isomorphism classes: | 204 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9785$ | $64042825$ | $495233096960$ | $3937102921854025$ | $31182021567541116425$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $108$ | $8084$ | $702486$ | $62750436$ | $5584113468$ | $496981023662$ | $44231333129532$ | $3936588751002436$ | $350356405121554374$ | $31181719922751364724$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=16 x^6+36 x^5+14 x^4+23 x^3+47 x^2+65 x+62$
- $y^2=33 x^6+52 x^5+9 x^4+82 x^3+44 x^2+60 x+51$
- $y^2=4 x^6+64 x^5+7 x^4+18 x^3+38 x^2+57 x+40$
- $y^2=49 x^6+61 x^5+48 x^4+54 x^3+22 x^2+70 x+83$
- $y^2=54 x^6+55 x^5+58 x^4+88 x^3+28 x^2+22 x+7$
- $y^2=20 x^6+75 x^5+6 x^4+46 x^3+77 x^2+16 x+5$
- $y^2=78 x^6+87 x^5+41 x^4+55 x^3+73 x^2+74 x+45$
- $y^2=8 x^6+21 x^5+42 x^4+79 x^3+48 x^2+64 x+82$
- $y^2=2 x^6+81 x^5+68 x^4+87 x^3+2 x^2+8 x+68$
- $y^2=69 x^6+74 x^5+9 x^4+76 x^3+52 x^2+88 x+9$
- $y^2=65 x^6+63 x^5+39 x^4+36 x^3+25 x^2+38 x+3$
- $y^2=62 x^6+41 x^5+30 x^4+61 x^3+78 x^2+66 x+85$
- $y^2=28 x^6+48 x^5+36 x^4+32 x^3+82 x^2+19 x+67$
- $y^2=82 x^6+39 x^5+52 x^4+10 x^3+10 x^2+2 x+17$
- $y^2=85 x^6+30 x^5+79 x^4+40 x^3+48 x^2+63 x+31$
- $y^2=39 x^6+37 x^5+11 x^4+88 x^3+10 x^2+29 x+47$
- $y^2=26 x^6+72 x^5+4 x^4+72 x^3+29 x^2+62 x+42$
- $y^2=83 x^6+55 x^5+45 x^4+56 x^3+35 x^2+2 x+30$
- $y^2=77 x^6+18 x^5+41 x^4+30 x^3+43 x^2+8 x+20$
- $y^2=4 x^6+58 x^5+48 x^4+74 x^3+12 x^2+37 x+39$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.f $\times$ 1.89.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.as_jj | $2$ | (not in LMFDB) |
2.89.ai_ej | $2$ | (not in LMFDB) |
2.89.i_ej | $2$ | (not in LMFDB) |