-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 9785, 'abvar_counts': [9785, 64042825, 495233096960, 3937102921854025, 31182021567541116425, 246990270723168572723200, 1956410908527942502043082905, 15496731209848921802277636969225, 122749610114270543589251696614718720, 972299657565879836369845293500476995625], 'abvar_counts_str': '9785 64042825 495233096960 3937102921854025 31182021567541116425 246990270723168572723200 1956410908527942502043082905 15496731209848921802277636969225 122749610114270543589251696614718720 972299657565879836369845293500476995625 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.585371785028879, 0.741949407250902], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 108, 'curve_counts': [108, 8084, 702486, 62750436, 5584113468, 496981023662, 44231333129532, 3936588751002436, 350356405121554374, 31181719922751364724], 'curve_counts_str': '108 8084 702486 62750436 5584113468 496981023662 44231333129532 3936588751002436 350356405121554374 31181719922751364724 ', 'curves': ['y^2=16*x^6+36*x^5+14*x^4+23*x^3+47*x^2+65*x+62', 'y^2=33*x^6+52*x^5+9*x^4+82*x^3+44*x^2+60*x+51', 'y^2=4*x^6+64*x^5+7*x^4+18*x^3+38*x^2+57*x+40', 'y^2=49*x^6+61*x^5+48*x^4+54*x^3+22*x^2+70*x+83', 'y^2=54*x^6+55*x^5+58*x^4+88*x^3+28*x^2+22*x+7', 'y^2=20*x^6+75*x^5+6*x^4+46*x^3+77*x^2+16*x+5', 'y^2=78*x^6+87*x^5+41*x^4+55*x^3+73*x^2+74*x+45', 'y^2=8*x^6+21*x^5+42*x^4+79*x^3+48*x^2+64*x+82', 'y^2=2*x^6+81*x^5+68*x^4+87*x^3+2*x^2+8*x+68', 'y^2=69*x^6+74*x^5+9*x^4+76*x^3+52*x^2+88*x+9', 'y^2=65*x^6+63*x^5+39*x^4+36*x^3+25*x^2+38*x+3', 'y^2=62*x^6+41*x^5+30*x^4+61*x^3+78*x^2+66*x+85', 'y^2=28*x^6+48*x^5+36*x^4+32*x^3+82*x^2+19*x+67', 'y^2=82*x^6+39*x^5+52*x^4+10*x^3+10*x^2+2*x+17', 'y^2=85*x^6+30*x^5+79*x^4+40*x^3+48*x^2+63*x+31', 'y^2=39*x^6+37*x^5+11*x^4+88*x^3+10*x^2+29*x+47', 'y^2=26*x^6+72*x^5+4*x^4+72*x^3+29*x^2+62*x+42', 'y^2=83*x^6+55*x^5+45*x^4+56*x^3+35*x^2+2*x+30', 'y^2=77*x^6+18*x^5+41*x^4+30*x^3+43*x^2+8*x+20', 'y^2=4*x^6+58*x^5+48*x^4+74*x^3+12*x^2+37*x+39', 'y^2=36*x^6+77*x^5+33*x^4+7*x^3+36*x^2+2*x+4', 'y^2=40*x^6+75*x^5+73*x^4+65*x^3+68*x^2+40*x+43', 'y^2=28*x^6+43*x^5+23*x^4+53*x^3+78*x^2+54*x+55', 'y^2=17*x^6+54*x^5+6*x^4+9*x^3+87*x^2+21*x+54', 'y^2=22*x^6+57*x^5+47*x^4+49*x^3+81*x^2+39*x+68', 'y^2=34*x^6+18*x^5+82*x^4+61*x^3+58*x^2+28*x+2', 'y^2=78*x^6+6*x^5+77*x^4+14*x^3+15*x^2+38*x+55', 'y^2=12*x^6+45*x^5+45*x^4+28*x^3+76*x^2+33*x+20', 'y^2=9*x^6+3*x^5+34*x^4+53*x^3+65*x^2+5*x+76', 'y^2=68*x^6+82*x^5+13*x^4+32*x^3+22*x^2+36*x+12', 'y^2=79*x^6+32*x^5+33*x^4+32*x^3+26*x^2+28*x+77', 'y^2=44*x^6+88*x^5+23*x^4+54*x^3+85*x^2+x+85', 'y^2=3*x^6+57*x^5+74*x^4+79*x^3+20*x^2+46*x+25', 'y^2=39*x^6+81*x^5+67*x^4+67*x^3+26*x^2+44*x+2', 'y^2=17*x^6+57*x^5+30*x^4+68*x^3+15*x^2+81*x+80', 'y^2=14*x^6+81*x^5+37*x^4+13*x^3+3*x^2+45*x+76', 'y^2=x^6+80*x^5+87*x^4+76*x^3+21*x^2+9*x+55', 'y^2=48*x^6+6*x^5+51*x^4+28*x^3+6*x^2+82*x+51', 'y^2=4*x^6+58*x^5+77*x^4+29*x^3+74*x^2+7*x+13', 'y^2=36*x^6+4*x^5+38*x^4+13*x^3+35*x^2+67*x+5', 'y^2=50*x^6+21*x^5+26*x^4+70*x^3+16*x^2+76*x+45', 'y^2=53*x^6+38*x^5+67*x^4+80*x^3+78*x^2+54*x+40', 'y^2=23*x^6+16*x^5+34*x^4+40*x^3+74*x^2+69*x+40', 'y^2=36*x^6+27*x^5+62*x^4+87*x^3+88*x^2+24*x+24', 'y^2=22*x^6+29*x^5+60*x^4+78*x^3+52*x^2+67*x+68', 'y^2=50*x^6+67*x^5+58*x^4+43*x^3+3*x^2+22*x+35', 'y^2=44*x^6+37*x^5+82*x^4+56*x^3+46*x+49', 'y^2=7*x^6+62*x^5+45*x^4+38*x^3+4*x^2+52*x+24', 'y^2=68*x^6+32*x^5+86*x^4+35*x^3+55*x^2+31*x+3', 'y^2=87*x^6+64*x^5+28*x^4+50*x^3+70*x^2+44*x+80', 'y^2=x^6+2*x^5+22*x^4+82*x^3+5*x^2+88*x+10', 'y^2=2*x^6+53*x^5+39*x^4+24*x^3+79*x^2+31*x+41', 'y^2=14*x^6+49*x^5+57*x^4+4*x^2+22*x+71', 'y^2=86*x^6+67*x^5+73*x^4+87*x^3+28*x^2+50*x+9', 'y^2=86*x^6+29*x^5+19*x^4+4*x^3+54*x^2+12*x+49', 'y^2=40*x^6+66*x^5+10*x^4+66*x^3+18*x^2+75*x+9', 'y^2=5*x^6+67*x^5+6*x^4+62*x^3+75*x^2+78*x+9', 'y^2=74*x^6+30*x^5+36*x^4+30*x^3+61*x^2+78*x+17', 'y^2=32*x^6+58*x^5+62*x^4+2*x^3+48*x^2+x+17', 'y^2=9*x^6+2*x^5+10*x^4+22*x^3+59*x^2+78*x+55', 'y^2=3*x^6+19*x^5+7*x^4+84*x^3+19*x^2+31*x+26', 'y^2=74*x^6+36*x^5+46*x^4+52*x^3+87*x^2+61*x+21', 'y^2=56*x^6+8*x^5+78*x^4+88*x^3+14*x^2+52*x+55', 'y^2=18*x^6+36*x^5+21*x^4+20*x^3+20*x^2+24*x+26', 'y^2=80*x^6+85*x^5+79*x^4+44*x^3+56*x^2+61*x+4', 'y^2=75*x^6+12*x^5+31*x^4+81*x^3+22*x^2+80*x+5', 'y^2=25*x^6+33*x^5+41*x^4+78*x^3+58*x^2+6*x+12', 'y^2=78*x^6+39*x^5+67*x^4+80*x^3+40*x^2+27*x+28', 'y^2=26*x^6+11*x^5+87*x^4+34*x^3+68*x^2+48*x+14', 'y^2=22*x^6+3*x^5+60*x^4+76*x^3+33*x^2+84*x+74', 'y^2=2*x^6+41*x^5+56*x^4+9*x^3+87*x^2+16*x+50', 'y^2=6*x^6+39*x^5+57*x^4+14*x^3+57*x^2+39*x+6'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.331.1', '2.0.187.1'], 'geometric_splitting_polynomials': [[1296, 0, 259, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.89.s_jj', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.331.1', '2.0.187.1'], 'p': 89, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 5, 1, 18], [1, 5, 2, 18], [2, 7, 1, 12], [2, 17, 1, 2]], 'poly': [1, 18, 243, 1602, 7921], 'poly_str': '1 18 243 1602 7921 ', 'primitive_models': [], 'principal_polarization_count': 78, 'q': 89, 'real_poly': [1, 18, 65], 'simple_distinct': ['1.89.f', '1.89.n'], 'simple_factors': ['1.89.fA', '1.89.nA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F^2+5*F+71'], 'size': 204, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_polynomials': [[1296, 0, 259, 0, 1]], 'twist_count': 4, 'twists': [['2.89.as_jj', '2.7921.gg_zmh', 2], ['2.89.ai_ej', '2.7921.gg_zmh', 2], ['2.89.i_ej', '2.7921.gg_zmh', 2]], 'weak_equivalence_count': 4, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 144, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 61897, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F^2+5*F+71']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 118336
{'base_label': '2.89.s_jj', 'extension_degree': 1, 'extension_label': '1.89.f', 'multiplicity': 1}
-
id: 118337
{'base_label': '2.89.s_jj', 'extension_degree': 1, 'extension_label': '1.89.n', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.331.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.89.f', 'galois_group': '2T1', 'places': [['2', '1'], ['86', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.187.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.89.n', 'galois_group': '2T1', 'places': [['6', '1'], ['82', '1']]}