# Stored data for abelian variety isogeny class 2.89.s_jj, downloaded from the LMFDB on 26 September 2025. {"abvar_count": 9785, "abvar_counts": [9785, 64042825, 495233096960, 3937102921854025, 31182021567541116425, 246990270723168572723200, 1956410908527942502043082905, 15496731209848921802277636969225, 122749610114270543589251696614718720, 972299657565879836369845293500476995625], "abvar_counts_str": "9785 64042825 495233096960 3937102921854025 31182021567541116425 246990270723168572723200 1956410908527942502043082905 15496731209848921802277636969225 122749610114270543589251696614718720 972299657565879836369845293500476995625 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.585371785028879, 0.741949407250902], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 108, "curve_counts": [108, 8084, 702486, 62750436, 5584113468, 496981023662, 44231333129532, 3936588751002436, 350356405121554374, 31181719922751364724], "curve_counts_str": "108 8084 702486 62750436 5584113468 496981023662 44231333129532 3936588751002436 350356405121554374 31181719922751364724 ", "curves": ["y^2=16*x^6+36*x^5+14*x^4+23*x^3+47*x^2+65*x+62", "y^2=33*x^6+52*x^5+9*x^4+82*x^3+44*x^2+60*x+51", "y^2=4*x^6+64*x^5+7*x^4+18*x^3+38*x^2+57*x+40", "y^2=49*x^6+61*x^5+48*x^4+54*x^3+22*x^2+70*x+83", "y^2=54*x^6+55*x^5+58*x^4+88*x^3+28*x^2+22*x+7", "y^2=20*x^6+75*x^5+6*x^4+46*x^3+77*x^2+16*x+5", "y^2=78*x^6+87*x^5+41*x^4+55*x^3+73*x^2+74*x+45", "y^2=8*x^6+21*x^5+42*x^4+79*x^3+48*x^2+64*x+82", "y^2=2*x^6+81*x^5+68*x^4+87*x^3+2*x^2+8*x+68", "y^2=69*x^6+74*x^5+9*x^4+76*x^3+52*x^2+88*x+9", "y^2=65*x^6+63*x^5+39*x^4+36*x^3+25*x^2+38*x+3", "y^2=62*x^6+41*x^5+30*x^4+61*x^3+78*x^2+66*x+85", "y^2=28*x^6+48*x^5+36*x^4+32*x^3+82*x^2+19*x+67", "y^2=82*x^6+39*x^5+52*x^4+10*x^3+10*x^2+2*x+17", "y^2=85*x^6+30*x^5+79*x^4+40*x^3+48*x^2+63*x+31", "y^2=39*x^6+37*x^5+11*x^4+88*x^3+10*x^2+29*x+47", "y^2=26*x^6+72*x^5+4*x^4+72*x^3+29*x^2+62*x+42", "y^2=83*x^6+55*x^5+45*x^4+56*x^3+35*x^2+2*x+30", "y^2=77*x^6+18*x^5+41*x^4+30*x^3+43*x^2+8*x+20", "y^2=4*x^6+58*x^5+48*x^4+74*x^3+12*x^2+37*x+39", "y^2=36*x^6+77*x^5+33*x^4+7*x^3+36*x^2+2*x+4", "y^2=40*x^6+75*x^5+73*x^4+65*x^3+68*x^2+40*x+43", "y^2=28*x^6+43*x^5+23*x^4+53*x^3+78*x^2+54*x+55", "y^2=17*x^6+54*x^5+6*x^4+9*x^3+87*x^2+21*x+54", "y^2=22*x^6+57*x^5+47*x^4+49*x^3+81*x^2+39*x+68", "y^2=34*x^6+18*x^5+82*x^4+61*x^3+58*x^2+28*x+2", "y^2=78*x^6+6*x^5+77*x^4+14*x^3+15*x^2+38*x+55", "y^2=12*x^6+45*x^5+45*x^4+28*x^3+76*x^2+33*x+20", "y^2=9*x^6+3*x^5+34*x^4+53*x^3+65*x^2+5*x+76", "y^2=68*x^6+82*x^5+13*x^4+32*x^3+22*x^2+36*x+12", "y^2=79*x^6+32*x^5+33*x^4+32*x^3+26*x^2+28*x+77", "y^2=44*x^6+88*x^5+23*x^4+54*x^3+85*x^2+x+85", "y^2=3*x^6+57*x^5+74*x^4+79*x^3+20*x^2+46*x+25", "y^2=39*x^6+81*x^5+67*x^4+67*x^3+26*x^2+44*x+2", "y^2=17*x^6+57*x^5+30*x^4+68*x^3+15*x^2+81*x+80", "y^2=14*x^6+81*x^5+37*x^4+13*x^3+3*x^2+45*x+76", "y^2=x^6+80*x^5+87*x^4+76*x^3+21*x^2+9*x+55", "y^2=48*x^6+6*x^5+51*x^4+28*x^3+6*x^2+82*x+51", "y^2=4*x^6+58*x^5+77*x^4+29*x^3+74*x^2+7*x+13", "y^2=36*x^6+4*x^5+38*x^4+13*x^3+35*x^2+67*x+5", "y^2=50*x^6+21*x^5+26*x^4+70*x^3+16*x^2+76*x+45", "y^2=53*x^6+38*x^5+67*x^4+80*x^3+78*x^2+54*x+40", "y^2=23*x^6+16*x^5+34*x^4+40*x^3+74*x^2+69*x+40", "y^2=36*x^6+27*x^5+62*x^4+87*x^3+88*x^2+24*x+24", "y^2=22*x^6+29*x^5+60*x^4+78*x^3+52*x^2+67*x+68", "y^2=50*x^6+67*x^5+58*x^4+43*x^3+3*x^2+22*x+35", "y^2=44*x^6+37*x^5+82*x^4+56*x^3+46*x+49", "y^2=7*x^6+62*x^5+45*x^4+38*x^3+4*x^2+52*x+24", "y^2=68*x^6+32*x^5+86*x^4+35*x^3+55*x^2+31*x+3", "y^2=87*x^6+64*x^5+28*x^4+50*x^3+70*x^2+44*x+80", "y^2=x^6+2*x^5+22*x^4+82*x^3+5*x^2+88*x+10", "y^2=2*x^6+53*x^5+39*x^4+24*x^3+79*x^2+31*x+41", "y^2=14*x^6+49*x^5+57*x^4+4*x^2+22*x+71", "y^2=86*x^6+67*x^5+73*x^4+87*x^3+28*x^2+50*x+9", "y^2=86*x^6+29*x^5+19*x^4+4*x^3+54*x^2+12*x+49", "y^2=40*x^6+66*x^5+10*x^4+66*x^3+18*x^2+75*x+9", "y^2=5*x^6+67*x^5+6*x^4+62*x^3+75*x^2+78*x+9", "y^2=74*x^6+30*x^5+36*x^4+30*x^3+61*x^2+78*x+17", "y^2=32*x^6+58*x^5+62*x^4+2*x^3+48*x^2+x+17", "y^2=9*x^6+2*x^5+10*x^4+22*x^3+59*x^2+78*x+55", "y^2=3*x^6+19*x^5+7*x^4+84*x^3+19*x^2+31*x+26", "y^2=74*x^6+36*x^5+46*x^4+52*x^3+87*x^2+61*x+21", "y^2=56*x^6+8*x^5+78*x^4+88*x^3+14*x^2+52*x+55", "y^2=18*x^6+36*x^5+21*x^4+20*x^3+20*x^2+24*x+26", "y^2=80*x^6+85*x^5+79*x^4+44*x^3+56*x^2+61*x+4", "y^2=75*x^6+12*x^5+31*x^4+81*x^3+22*x^2+80*x+5", "y^2=25*x^6+33*x^5+41*x^4+78*x^3+58*x^2+6*x+12", "y^2=78*x^6+39*x^5+67*x^4+80*x^3+40*x^2+27*x+28", "y^2=26*x^6+11*x^5+87*x^4+34*x^3+68*x^2+48*x+14", "y^2=22*x^6+3*x^5+60*x^4+76*x^3+33*x^2+84*x+74", "y^2=2*x^6+41*x^5+56*x^4+9*x^3+87*x^2+16*x+50", "y^2=6*x^6+39*x^5+57*x^4+14*x^3+57*x^2+39*x+6"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.331.1", "2.0.187.1"], "geometric_splitting_polynomials": [[1296, 0, 259, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.89.s_jj", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.331.1", "2.0.187.1"], "p": 89, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 5, 1, 18], [1, 5, 2, 18], [2, 7, 1, 12], [2, 17, 1, 2]], "poly": [1, 18, 243, 1602, 7921], "poly_str": "1 18 243 1602 7921 ", "primitive_models": [], "principal_polarization_count": 78, "q": 89, "real_poly": [1, 18, 65], "simple_distinct": ["1.89.f", "1.89.n"], "simple_factors": ["1.89.fA", "1.89.nA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F^2+5*F+71"], "size": 204, "slopes": ["0A", "0B", "1A", "1B"], "splitting_polynomials": [[1296, 0, 259, 0, 1]], "twist_count": 4, "twists": [["2.89.as_jj", "2.7921.gg_zmh", 2], ["2.89.ai_ej", "2.7921.gg_zmh", 2], ["2.89.i_ej", "2.7921.gg_zmh", 2]], "weak_equivalence_count": 4, "zfv_index": 64, "zfv_index_factorization": [[2, 6]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 144, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 61897, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F^2+5*F+71"]}