Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 73 x^{2} )( 1 + 12 x + 73 x^{2} )$ |
$1 + 6 x + 74 x^{2} + 438 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.385799748780$, $\pm0.747819727108$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $264$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5848$ | $29006080$ | $151411041688$ | $806721737932800$ | $4297312900919415448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $5442$ | $389216$ | $28407454$ | $2072920640$ | $151333766754$ | $11047407356912$ | $806460089899966$ | $58871587071945008$ | $4297625826246964482$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=12 x^6+47 x^5+5 x^4+9 x^3+x^2+38 x+69$
- $y^2=21 x^6+23 x^5+25 x^4+35 x^3+34 x^2+28 x+55$
- $y^2=68 x^6+63 x^5+5 x^4+43 x^3+66 x^2+67 x+49$
- $y^2=54 x^6+24 x^5+47 x^4+14 x^3+35 x^2+31 x+41$
- $y^2=47 x^6+4 x^5+7 x^4+40 x^3+9 x^2+33 x+22$
- $y^2=59 x^6+29 x^5+15 x^4+20 x^3+62 x^2+56 x+72$
- $y^2=60 x^6+67 x^5+37 x^4+5 x^3+58 x^2+43 x+68$
- $y^2=26 x^6+56 x^5+56 x^4+52 x^3+22 x^2+9 x+16$
- $y^2=36 x^6+41 x^5+68 x^4+42 x^3+26 x^2+37 x+23$
- $y^2=66 x^6+35 x^5+21 x^3+24 x^2+30 x+53$
- $y^2=48 x^6+66 x^5+57 x^4+24 x^3+13 x^2+14 x+56$
- $y^2=32 x^6+12 x^5+2 x^4+37 x^3+21 x^2+25 x+59$
- $y^2=x^6+71 x^4+3 x^3+3 x^2+24 x+30$
- $y^2=14 x^6+49 x^5+51 x^4+31 x^3+58 x^2+62 x+17$
- $y^2=12 x^6+52 x^5+21 x^4+47 x^3+8 x^2+30 x+57$
- $y^2=20 x^6+53 x^5+48 x^4+56 x^3+30 x^2+21 x+41$
- $y^2=39 x^6+31 x^5+55 x^4+44 x^3+22 x^2+68 x+25$
- $y^2=43 x^6+24 x^5+16 x^4+54 x^3+39 x^2+7 x+25$
- $y^2=47 x^6+67 x^5+36 x^4+28 x^3+11 x^2+48 x+33$
- $y^2=18 x^6+68 x^5+50 x^4+66 x^3+50 x^2+68 x+18$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ag $\times$ 1.73.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.