# Stored data for abelian variety isogeny class 2.73.g_cw, downloaded from the LMFDB on 21 October 2025. {"abvar_count": 5848, "abvar_counts": [5848, 29006080, 151411041688, 806721737932800, 4297312900919415448, 22901978503281582465280, 122045111674641254382162904, 650377878209633108279564697600, 3465863742959354908661502372877912, 18469587757280048216521028261733126400], "abvar_counts_str": "5848 29006080 151411041688 806721737932800 4297312900919415448 22901978503281582465280 122045111674641254382162904 650377878209633108279564697600 3465863742959354908661502372877912 18469587757280048216521028261733126400 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.385799748780092, 0.747819727107554], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 80, "curve_counts": [80, 5442, 389216, 28407454, 2072920640, 151333766754, 11047407356912, 806460089899966, 58871587071945008, 4297625826246964482], "curve_counts_str": "80 5442 389216 28407454 2072920640 151333766754 11047407356912 806460089899966 58871587071945008 4297625826246964482 ", "curves": ["y^2=12*x^6+47*x^5+5*x^4+9*x^3+x^2+38*x+69", "y^2=21*x^6+23*x^5+25*x^4+35*x^3+34*x^2+28*x+55", "y^2=68*x^6+63*x^5+5*x^4+43*x^3+66*x^2+67*x+49", "y^2=54*x^6+24*x^5+47*x^4+14*x^3+35*x^2+31*x+41", "y^2=47*x^6+4*x^5+7*x^4+40*x^3+9*x^2+33*x+22", "y^2=59*x^6+29*x^5+15*x^4+20*x^3+62*x^2+56*x+72", "y^2=60*x^6+67*x^5+37*x^4+5*x^3+58*x^2+43*x+68", "y^2=26*x^6+56*x^5+56*x^4+52*x^3+22*x^2+9*x+16", "y^2=36*x^6+41*x^5+68*x^4+42*x^3+26*x^2+37*x+23", "y^2=66*x^6+35*x^5+21*x^3+24*x^2+30*x+53", "y^2=48*x^6+66*x^5+57*x^4+24*x^3+13*x^2+14*x+56", "y^2=32*x^6+12*x^5+2*x^4+37*x^3+21*x^2+25*x+59", "y^2=x^6+71*x^4+3*x^3+3*x^2+24*x+30", "y^2=14*x^6+49*x^5+51*x^4+31*x^3+58*x^2+62*x+17", "y^2=12*x^6+52*x^5+21*x^4+47*x^3+8*x^2+30*x+57", "y^2=20*x^6+53*x^5+48*x^4+56*x^3+30*x^2+21*x+41", "y^2=39*x^6+31*x^5+55*x^4+44*x^3+22*x^2+68*x+25", "y^2=43*x^6+24*x^5+16*x^4+54*x^3+39*x^2+7*x+25", "y^2=47*x^6+67*x^5+36*x^4+28*x^3+11*x^2+48*x+33", "y^2=18*x^6+68*x^5+50*x^4+66*x^3+50*x^2+68*x+18", "y^2=64*x^6+19*x^5+35*x^4+19*x^3+55*x^2+57*x+12", "y^2=8*x^6+66*x^5+24*x^4+6*x^3+70*x^2+16*x+37", "y^2=70*x^6+65*x^5+27*x^4+54*x^3+11*x^2+51*x+7", "y^2=51*x^5+26*x^4+15*x^3+17*x^2+19*x+48", "y^2=10*x^6+36*x^5+45*x^4+52*x^3+10*x^2+67*x+3", "y^2=38*x^6+2*x^5+68*x^4+35*x^3+13*x^2+18*x+39", "y^2=64*x^6+59*x^5+2*x^4+33*x^3+x^2+2*x+62", "y^2=5*x^6+43*x^5+19*x^4+40*x^3+19*x^2+57*x+20", "y^2=6*x^6+27*x^5+43*x^4+35*x^3+51*x^2+26*x+22", "y^2=58*x^6+52*x^5+9*x^4+11*x^3+50*x^2+53*x+72", "y^2=39*x^6+53*x^5+4*x^4+19*x^3+28*x^2+13", "y^2=67*x^6+24*x^5+7*x^4+26*x^3+10*x^2+59*x+41", "y^2=31*x^6+10*x^5+25*x^4+69*x^3+51*x^2+25*x+5", "y^2=52*x^6+55*x^5+16*x^4+18*x^3+62*x^2+47*x+31", "y^2=x^6+62*x^5+37*x^4+72*x^3+41*x^2+32*x+16", "y^2=9*x^6+45*x^5+33*x^4+49*x^3+32*x^2+46*x+33", "y^2=13*x^6+34*x^5+7*x^4+39*x^3+24*x^2+6*x+40", "y^2=67*x^6+36*x^5+63*x^4+37*x^3+42*x^2+71*x+57", "y^2=60*x^6+64*x^5+48*x^4+62*x^3+26*x^2+9*x+4", "y^2=14*x^6+10*x^5+34*x^4+52*x^3+61*x^2+55*x+24", "y^2=33*x^5+67*x^4+35*x^3+57*x^2+18*x+10", "y^2=63*x^6+2*x^5+72*x^4+66*x^3+32*x^2+69*x+65", "y^2=53*x^6+4*x^5+33*x^4+70*x^3+53*x^2+69*x+15", "y^2=65*x^6+27*x^5+51*x^4+29*x^3+3*x^2+44*x+66", "y^2=41*x^6+54*x^5+63*x^4+39*x^3+19*x^2+51*x+40", "y^2=39*x^6+42*x^5+4*x^4+37*x^3+54*x^2+26*x+60", "y^2=41*x^6+69*x^5+42*x^4+49*x^3+53*x^2+67*x+25", "y^2=63*x^6+67*x^5+62*x^4+36*x^3+62*x^2+53*x+59", "y^2=55*x^6+23*x^5+52*x^4+27*x^3+50*x^2+26*x+40", "y^2=6*x^6+71*x^5+53*x^4+9*x^3+42*x^2+52*x+5", "y^2=59*x^6+65*x^5+41*x^4+5*x^3+67*x^2+23*x+21", "y^2=72*x^6+18*x^5+7*x^4+50*x^3+47*x^2+56*x+48", "y^2=60*x^6+61*x^5+55*x^4+46*x^3+69*x^2+37*x+36", "y^2=24*x^6+26*x^5+58*x^4+36*x^3+29*x^2+30*x+71", "y^2=66*x^6+13*x^5+62*x^4+22*x^3+59*x^2+4*x+71", "y^2=40*x^6+62*x^5+64*x^4+18*x^3+56*x^2+28*x+66", "y^2=61*x^6+69*x^5+30*x^4+26*x^3+20*x^2+x+69", "y^2=8*x^6+54*x^5+24*x^4+70*x^3+63*x^2+25*x", "y^2=25*x^6+42*x^5+25*x^4+54*x^3+13*x^2+37*x+2", "y^2=50*x^6+25*x^5+13*x^4+32*x^3+47*x^2+22*x+3", "y^2=37*x^6+43*x^5+32*x^4+61*x^3+32*x^2+54*x+45", "y^2=2*x^6+42*x^5+71*x^4+27*x^3+45*x^2+2*x+2", "y^2=35*x^6+12*x^5+62*x^3+20*x^2+26*x+48", "y^2=37*x^6+23*x^5+6*x^4+14*x^3+49*x^2+21*x+32", "y^2=9*x^6+35*x^5+24*x^4+44*x^3+34*x^2+7*x+41", "y^2=61*x^6+24*x^5+26*x^4+71*x^3+5*x+64", "y^2=13*x^6+53*x^5+60*x^4+68*x^3+7*x^2+25*x+68", "y^2=28*x^6+48*x^5+49*x^4+32*x^3+53*x^2+70*x+6", "y^2=18*x^6+62*x^5+46*x^4+64*x^3+70*x^2+33*x+72", "y^2=50*x^6+70*x^5+42*x^4+32*x^3+27*x^2+43*x+9", "y^2=51*x^6+53*x^5+68*x^4+41*x^3+22*x^2+46*x+3", "y^2=12*x^6+24*x^5+12*x^4+26*x^3+13*x^2+9*x+28", "y^2=60*x^6+x^5+13*x^4+17*x^2+56*x+45", "y^2=13*x^6+31*x^5+34*x^4+39*x^3+34*x^2+31*x+13", "y^2=6*x^6+12*x^5+65*x^4+18*x^3+35*x^2+2*x+64", "y^2=63*x^6+6*x^5+30*x^4+3*x^3+14*x^2+x+71", "y^2=18*x^5+44*x^4+62*x^3+46*x^2+6*x+37", "y^2=43*x^6+67*x^5+68*x^4+22*x^3+13*x^2+39*x+7", "y^2=70*x^6+59*x^5+21*x^4+13*x^3+63*x^2+15*x+21", "y^2=67*x^6+19*x^5+41*x^4+45*x^3+18*x^2+26*x+17", "y^2=55*x^6+2*x^5+6*x^4+51*x^3+6*x^2+10*x+25", "y^2=55*x^6+35*x^5+48*x^4+8*x^3+57*x^2+44*x+7", "y^2=32*x^6+33*x^5+53*x^4+67*x^3+53*x^2+33*x+32", "y^2=14*x^6+69*x^5+27*x^4+7*x^3+61*x^2+46*x+44", "y^2=18*x^6+51*x^5+41*x^4+41*x^3+2*x^2+60*x", "y^2=3*x^6+66*x^5+41*x^4+11*x^3+35*x^2+9*x+57", "y^2=8*x^6+22*x^5+44*x^4+61*x^3+49*x^2+32*x+33", "y^2=17*x^6+27*x^5+13*x^4+32*x^3+57*x^2+40*x+11", "y^2=44*x^6+65*x^5+15*x^4+70*x^3+6*x^2+30*x+62", "y^2=37*x^6+53*x^5+31*x^4+12*x^3+33*x^2+31*x+14", "y^2=20*x^6+3*x^5+66*x^4+42*x^3+30*x^2+43*x+28", "y^2=41*x^6+62*x^5+33*x^4+28*x^3+5*x^2+29*x+26", "y^2=61*x^6+29*x^5+47*x^4+40*x^3+7*x^2+58*x+21", "y^2=61*x^6+14*x^5+63*x^4+47*x^3+16*x^2+31*x+25", "y^2=30*x^6+61*x^5+16*x^4+58*x^3+66*x^2+14*x+6", "y^2=53*x^6+10*x^5+49*x^4+61*x^3+62*x^2+61*x+11", "y^2=42*x^6+17*x^5+48*x^4+16*x^3+35*x^2+24*x+46", "y^2=18*x^6+46*x^5+20*x^4+15*x^3+42*x^2+61*x+1", "y^2=49*x^6+37*x^5+70*x^4+45*x^3+23*x^2+49*x+69", "y^2=8*x^6+19*x^5+67*x^4+55*x^3+43*x^2+54*x+52", "y^2=49*x^6+66*x^5+46*x^4+42*x^3+43*x^2+58*x+64", "y^2=23*x^6+14*x^5+11*x^4+62*x^3+19*x^2+26*x+66", "y^2=24*x^6+40*x^5+12*x^4+65*x^3+20*x^2+67*x+48", "y^2=65*x^6+46*x^5+72*x^4+4*x^3+72*x^2+46*x+65", "y^2=20*x^6+12*x^5+18*x^4+20*x^3+18*x^2+12*x+20", "y^2=56*x^6+31*x^5+25*x^4+25*x^3+34*x^2+5*x+27", "y^2=38*x^6+19*x^5+2*x^4+58*x^2+49*x+4", "y^2=7*x^6+23*x^5+51*x^4+54*x^3+27*x^2+65*x+50", "y^2=47*x^6+33*x^5+32*x^4+43*x^3+37*x^2+54*x+27", "y^2=70*x^6+49*x^5+69*x^4+10*x^3+15*x^2+7*x+27", "y^2=13*x^6+48*x^5+23*x^4+17*x^3+48*x^2+43*x+15", "y^2=26*x^6+x^5+30*x^4+5*x^3+70*x^2+62*x+34", "y^2=8*x^6+60*x^5+28*x^4+21*x^3+9*x^2+50*x+61", "y^2=56*x^6+39*x^5+31*x^4+69*x^3+44*x^2+15*x+57", "y^2=5*x^6+19*x^5+62*x^4+27*x^3+71*x^2+12*x+23", "y^2=17*x^6+42*x^5+72*x^4+21*x^3+32*x^2+2*x+24", "y^2=58*x^6+15*x^5+9*x^4+13*x^3+41*x^2+15*x+41", "y^2=22*x^6+72*x^5+38*x^4+59*x^3+37*x+20", "y^2=26*x^6+67*x^5+71*x^4+26*x^3+55*x^2+61*x+22", "y^2=55*x^6+15*x^5+34*x^4+6*x^3+34*x^2+15*x+55", "y^2=10*x^6+17*x^5+57*x^4+8*x^3+70*x^2+59*x+36", "y^2=20*x^6+12*x^5+60*x^4+43*x^3+7*x^2+26*x+10", "y^2=37*x^6+66*x^5+15*x^4+9*x^3+57*x^2+33*x+65", "y^2=70*x^6+16*x^5+71*x^4+14*x^3+3*x^2+65*x+19", "y^2=55*x^6+52*x^5+39*x^4+6*x^3+58*x^2+63*x+19", "y^2=29*x^6+71*x^5+6*x^4+51*x^3+58*x^2+22*x+5", "y^2=x^6+20*x^5+69*x^4+48*x^3+70*x^2+64*x+45", "y^2=68*x^6+3*x^5+14*x^4+23*x^3+65*x^2+49*x+71", "y^2=66*x^6+22*x^5+42*x^4+57*x^3+35*x^2+72*x+60", "y^2=17*x^6+35*x^5+10*x^4+16*x^3+63*x^2+52*x+45", "y^2=10*x^6+7*x^5+57*x^4+43*x^3+57*x^2+7*x+10", "y^2=12*x^6+34*x^5+2*x^4+66*x^3+53*x^2+66*x+11", "y^2=3*x^6+19*x^5+29*x^4+53*x^3+31*x^2+30*x+27", "y^2=67*x^6+15*x^5+12*x^4+2*x^3+58*x^2+62*x+17", "y^2=22*x^6+34*x^5+47*x^4+66*x^3+71*x^2+69*x+34", "y^2=19*x^6+19*x^5+9*x^4+22*x^3+x^2+49*x+48", "y^2=70*x^5+2*x^4+25*x^3+69*x^2+29*x+27", "y^2=72*x^6+50*x^5+62*x^4+68*x^3+56*x^2+56*x+41", "y^2=54*x^6+67*x^5+30*x^4+15*x^3+60*x^2+65*x+47", "y^2=62*x^6+18*x^5+17*x^4+2*x^3+17*x^2+20*x+63", "y^2=10*x^6+63*x^5+15*x^4+72*x^3+2*x^2+17*x+3", "y^2=40*x^6+40*x^5+59*x^4+55*x^3+65*x^2+57*x+18", "y^2=31*x^6+40*x^5+27*x^4+15*x^3+26*x^2+71*x+68", "y^2=71*x^6+4*x^5+51*x^4+50*x^3+64*x^2+50*x", "y^2=21*x^6+45*x^5+25*x^4+37*x^3+22*x^2+60*x+44", "y^2=3*x^6+29*x^5+7*x^4+57*x^3+68*x^2+36*x+44", "y^2=35*x^6+61*x^5+52*x^4+32*x^3+24*x^2+4*x+24", "y^2=52*x^6+28*x^5+57*x^4+5*x^3+4*x^2+16*x+45", "y^2=27*x^6+72*x^5+52*x^4+41*x^3+47*x^2+7*x+18", "y^2=70*x^6+13*x^5+42*x^4+10*x^3+14*x^2+56*x+63", "y^2=45*x^6+39*x^5+70*x^4+28*x^3+20*x^2+31*x+38", "y^2=24*x^6+15*x^5+19*x^4+52*x^3+24*x^2+x+20", "y^2=25*x^6+31*x^5+46*x^4+52*x^3+56*x^2+24", "y^2=49*x^6+5*x^5+17*x^4+22*x^3+6*x^2+54*x+42", "y^2=38*x^6+5*x^5+23*x^4+58*x^3+24*x^2+x+69", "y^2=14*x^6+32*x^5+9*x^4+27*x^3+28*x^2+32*x+37", "y^2=57*x^6+33*x^5+13*x^4+10*x^3+14*x^2+40*x+6", "y^2=72*x^6+4*x^5+21*x^4+21*x^3+57*x^2+15*x+27", "y^2=30*x^6+x^5+38*x^4+25*x^3+65*x^2+67*x+39", "y^2=63*x^6+41*x^5+58*x^4+66*x^3+72*x^2+55*x+21", "y^2=3*x^6+4*x^5+36*x^4+71*x^3+34*x^2+51*x+51", "y^2=65*x^6+10*x^5+57*x^4+48*x^3+47*x^2+68*x+67", "y^2=x^6+42*x^5+69*x^3+66*x^2+30*x+41", "y^2=69*x^6+25*x^5+36*x^4+32*x^3+34*x^2+39*x+27", "y^2=37*x^6+21*x^5+41*x^4+27*x^3+65*x^2+22*x+57", "y^2=11*x^6+36*x^5+47*x^4+30*x^3+34*x^2+62*x+45", "y^2=51*x^6+50*x^5+22*x^4+46*x^3+26*x^2+36*x+68", "y^2=40*x^6+26*x^5+6*x^4+26*x^3+28*x^2+56*x+66", "y^2=40*x^6+51*x^5+49*x^4+64*x^3+24*x^2+37*x+62", "y^2=47*x^6+3*x^5+72*x^4+6*x^3+45*x^2+20*x+3", "y^2=49*x^6+51*x^5+52*x^4+68*x^3+22*x^2+4*x+22", "y^2=15*x^6+66*x^5+22*x^4+23*x^3+8*x^2+51*x+68", "y^2=44*x^6+25*x^5+13*x^4+8*x^3+42*x^2+47*x+65", "y^2=43*x^6+60*x^5+13*x^4+22*x^3+17*x^2+14*x", "y^2=39*x^6+22*x^5+26*x^4+3*x^2+10*x+13", "y^2=2*x^6+59*x^5+3*x^4+68*x^3+23*x^2+13*x+71", "y^2=71*x^5+31*x^4+x^3+2*x^2+17*x+68", "y^2=7*x^6+44*x^5+37*x^4+55*x^3+41*x^2+41*x+45", "y^2=11*x^6+22*x^5+42*x^4+41*x^3+51*x^2+44*x+25", "y^2=68*x^6+4*x^5+x^4+25*x^3+23*x^2+51*x+10", "y^2=29*x^6+54*x^5+31*x^4+12*x^3+55*x^2+21*x+58", "y^2=36*x^6+2*x^5+21*x^4+4*x^3+16*x^2+39*x+40", "y^2=61*x^6+25*x^5+36*x^4+12*x^3+69*x^2+28*x+30", "y^2=28*x^6+70*x^5+68*x^4+34*x^3+49*x^2+48*x+62", "y^2=34*x^6+23*x^5+x^4+4*x^3+36*x^2+24*x+14", "y^2=47*x^6+11*x^5+12*x^4+x^3+x^2+12*x+9", "y^2=31*x^6+24*x^5+49*x^4+48*x^3+21*x^2+18*x+18", "y^2=15*x^6+58*x^5+26*x^4+24*x^3+53*x^2+67*x", "y^2=25*x^6+51*x^5+58*x^4+24*x^3+4*x^2+64*x+69", "y^2=53*x^6+18*x^5+46*x^4+x^3+33*x^2+19*x+31", "y^2=16*x^6+62*x^5+34*x^4+23*x^3+41*x^2+50*x+65", "y^2=46*x^6+67*x^5+70*x^4+14*x^3+4*x^2+41*x+55", "y^2=30*x^6+63*x^5+20*x^4+49*x^3+36*x^2+9*x", "y^2=50*x^6+2*x^5+31*x^4+63*x^3+13*x^2+12*x+45", "y^2=29*x^6+6*x^5+9*x^4+3*x^3+48*x^2+40*x", "y^2=31*x^6+48*x^5+5*x^4+48*x^3+25*x^2+50*x+27", "y^2=47*x^6+17*x^5+49*x^4+11*x^3+62*x^2+14*x+64", "y^2=57*x^6+2*x^5+58*x^4+61*x^3+57*x^2+42*x+31", "y^2=50*x^6+43*x^5+30*x^4+23*x^3+29*x^2+27*x+22", "y^2=3*x^6+42*x^5+8*x^4+46*x^3+64*x^2+12*x+70", "y^2=13*x^6+52*x^5+11*x^4+3*x^3+68*x^2+19*x+71", "y^2=20*x^6+12*x^5+10*x^4+33*x^3+6*x^2+67*x+51", "y^2=67*x^6+22*x^5+59*x^4+46*x^3+16*x^2+31*x+2", "y^2=64*x^5+65*x^4+68*x^3+13*x^2+69*x+13", "y^2=36*x^6+32*x^5+57*x^4+25*x^3+22*x^2+45*x+54", "y^2=35*x^6+61*x^5+27*x^3+24*x+36", "y^2=28*x^6+8*x^5+37*x^4+37*x^3+59*x^2+13*x+66", "y^2=25*x^6+23*x^5+11*x^4+34*x^3+24*x^2+66*x+8", "y^2=40*x^6+50*x^5+49*x^4+44*x^3+63*x^2+39*x+37", "y^2=18*x^6+38*x^5+66*x^4+35*x^3+57*x^2+4*x+47", "y^2=63*x^6+54*x^5+50*x^4+55*x^3+50*x^2+54*x+63", "y^2=54*x^6+58*x^5+71*x^4+56*x^3+24*x^2+10*x+19", "y^2=4*x^6+48*x^5+67*x^4+20*x^3+71*x^2+13*x+23", "y^2=41*x^6+68*x^5+39*x^4+72*x^3+9*x^2+72*x+2", "y^2=62*x^6+61*x^5+44*x^4+41*x^3+72*x^2+3*x+17", "y^2=67*x^6+42*x^5+42*x^4+72*x^3+50*x^2+61*x+44", "y^2=27*x^6+42*x^5+58*x^4+34*x^3+37*x^2+42*x+60", "y^2=62*x^6+57*x^5+64*x^4+36*x^3+64*x^2+2*x+38", "y^2=44*x^6+41*x^5+58*x^4+40*x^3+8*x^2+55*x+54", "y^2=72*x^6+71*x^5+7*x^4+49*x^3+2*x^2+10*x+10", "y^2=16*x^6+38*x^5+31*x^4+40*x^3+22*x^2+37*x+66", "y^2=46*x^6+69*x^5+48*x^4+10*x^3+40*x^2+63*x+2", "y^2=48*x^6+54*x^5+29*x^4+60*x^3+3*x^2+40*x+17", "y^2=35*x^6+39*x^5+56*x^4+42*x^3+13*x^2+23*x+58", "y^2=56*x^6+40*x^5+25*x^4+69*x^3+39*x^2+13*x+56", "y^2=4*x^6+9*x^5+57*x^4+66*x^3+68*x^2+64", "y^2=29*x^6+67*x^5+16*x^4+25*x^3+34*x^2+9*x+62", "y^2=16*x^6+55*x^5+11*x^4+48*x^3+13*x^2+36*x+46", "y^2=14*x^6+40*x^5+5*x^4+64*x^3+23*x^2+51*x+18", "y^2=60*x^6+38*x^5+28*x^4+47*x^3+66*x^2+46*x+40", "y^2=61*x^6+41*x^5+20*x^4+9*x^3+8*x^2+60*x+67", "y^2=46*x^6+56*x^5+32*x^4+32*x^3+66*x^2+66*x+69", "y^2=64*x^6+6*x^5+69*x^4+58*x^3+30*x^2+65*x+18", "y^2=60*x^6+67*x^5+46*x^4+68*x^3+60*x^2+2*x+44", "y^2=45*x^6+25*x^5+35*x^4+15*x^3+24*x^2+33*x+33", "y^2=17*x^6+55*x^5+33*x^4+53*x^3+57*x^2+12*x+40", "y^2=13*x^6+23*x^5+59*x^4+2*x^3+26*x^2+6*x+55", "y^2=53*x^6+4*x^4+67*x^3+59*x^2+15*x+67", "y^2=26*x^6+31*x^5+72*x^4+50*x^3+x^2+26*x+6", "y^2=2*x^6+18*x^5+42*x^4+61*x^3+54*x^2+10*x+47", "y^2=12*x^6+26*x^5+44*x^4+7*x^3+25*x^2+48*x+53", "y^2=61*x^6+71*x^5+43*x^4+14*x^3+36*x^2+8*x+51", "y^2=29*x^5+40*x^4+24*x^3+20*x^2+71*x+61", "y^2=50*x^6+65*x^5+63*x^4+63*x^3+37*x^2+4*x+1", "y^2=54*x^6+48*x^5+10*x^4+16*x^3+69*x^2+70*x+47", "y^2=30*x^6+27*x^5+x^4+x^3+65*x^2+40*x+70", "y^2=34*x^6+72*x^5+50*x^4+37*x^3+22*x^2+46*x+12", "y^2=68*x^6+30*x^5+46*x^4+68*x^3+46*x^2+30*x+68", "y^2=15*x^6+16*x^5+35*x^4+68*x^3+31*x^2+40*x+53", "y^2=52*x^6+33*x^5+48*x^4+69*x^3+10*x^2+5*x+72", "y^2=64*x^6+49*x^5+52*x^4+11*x^3+12*x^2+38*x+32", "y^2=72*x^6+62*x^5+61*x^4+39*x^3+38*x^2+57*x+59", "y^2=57*x^6+18*x^5+15*x^4+26*x^3+31*x^2+54*x+68", "y^2=15*x^6+56*x^5+72*x^4+36*x^3+51*x^2+19*x+22", "y^2=44*x^6+31*x^5+32*x^4+28*x^3+16*x^2+29*x+7", "y^2=3*x^6+4*x^5+72*x^4+25*x^3+18*x^2+48*x+31", "y^2=39*x^6+19*x^5+37*x^4+55*x^3+9*x^2+24*x+53", "y^2=37*x^6+65*x^5+20*x^4+44*x^3+53*x^2+68*x+19", "y^2=53*x^6+35*x^5+30*x^4+11*x^3+6*x^2+3*x+46", "y^2=9*x^6+3*x^5+7*x^4+58*x^3+42*x^2+58*x+8", "y^2=64*x^6+58*x^5+9*x^4+10*x^3+52*x^2+15*x+25", "y^2=62*x^6+17*x^5+62*x^4+50*x^3+61*x^2+45*x+20", "y^2=59*x^6+36*x^5+17*x^4+31*x^3+43*x^2+4*x+60", "y^2=57*x^6+18*x^5+34*x^4+60*x^3+10*x^2+72*x+17"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 27, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.4.1", "2.0.148.1"], "geometric_splitting_field": "4.0.21904.1", "geometric_splitting_polynomials": [[81, 0, 19, 0, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 264, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 264, "label": "2.73.g_cw", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 4, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.4.1", "2.0.148.1"], "p": 73, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 6, 74, 438, 5329], "poly_str": "1 6 74 438 5329 ", "primitive_models": [], "q": 73, "real_poly": [1, 6, -72], "simple_distinct": ["1.73.ag", "1.73.m"], "simple_factors": ["1.73.agA", "1.73.mA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,9*F+1", "3,-F^2-3*F-73"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.21904.1", "splitting_polynomials": [[81, 0, 19, 0, 1]], "twist_count": 8, "twists": [["2.73.as_ik", "2.5329.ei_qck", 2], ["2.73.ag_cw", "2.5329.ei_qck", 2], ["2.73.s_ik", "2.5329.ei_qck", 2], ["2.73.abc_na", "2.28398241.nqi_dmrkaw", 4], ["2.73.ae_abu", "2.28398241.nqi_dmrkaw", 4], ["2.73.e_abu", "2.28398241.nqi_dmrkaw", 4], ["2.73.bc_na", "2.28398241.nqi_dmrkaw", 4]], "weak_equivalence_count": 36, "zfv_index": 2592, "zfv_index_factorization": [[2, 5], [3, 4]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 37888, "zfv_singular_count": 4, "zfv_singular_primes": ["2,9*F+1", "3,-F^2-3*F-73"]}