| L(s) = 1 | − 3·4-s − 7-s + 9-s + 4·11-s − 4·13-s + 5·16-s − 12·17-s + 8·19-s − 6·25-s + 3·28-s − 3·36-s + 12·37-s + 4·41-s − 12·44-s + 49-s + 12·52-s + 12·53-s − 4·61-s − 63-s − 3·64-s + 8·67-s + 36·68-s − 12·73-s − 24·76-s − 4·77-s + 81-s − 24·83-s + ⋯ |
| L(s) = 1 | − 3/2·4-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 1.10·13-s + 5/4·16-s − 2.91·17-s + 1.83·19-s − 6/5·25-s + 0.566·28-s − 1/2·36-s + 1.97·37-s + 0.624·41-s − 1.80·44-s + 1/7·49-s + 1.66·52-s + 1.64·53-s − 0.512·61-s − 0.125·63-s − 3/8·64-s + 0.977·67-s + 4.36·68-s − 1.40·73-s − 2.75·76-s − 0.455·77-s + 1/9·81-s − 2.63·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373527 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373527 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.672365196683144779961098572501, −8.116871407954105327881310337349, −7.36940949637622773245609071348, −7.25047783802838427330028450541, −6.62105717552400612885059059406, −6.04825788583317143584553877528, −5.61883729113008416400697263528, −4.88039179056941194097196564281, −4.49790654060497533755621117209, −4.13559084050773741974089362056, −3.73651278750844385913287951941, −2.78382618289105024776834466639, −2.17377383748365885728293696566, −1.05642342442732846317295357874, 0,
1.05642342442732846317295357874, 2.17377383748365885728293696566, 2.78382618289105024776834466639, 3.73651278750844385913287951941, 4.13559084050773741974089362056, 4.49790654060497533755621117209, 4.88039179056941194097196564281, 5.61883729113008416400697263528, 6.04825788583317143584553877528, 6.62105717552400612885059059406, 7.25047783802838427330028450541, 7.36940949637622773245609071348, 8.116871407954105327881310337349, 8.672365196683144779961098572501