Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 16 x + 79 x^{2} )( 1 + 16 x + 79 x^{2} )$ |
$1 - 98 x^{2} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.143514932644$, $\pm0.856485067356$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $230$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6144$ | $37748736$ | $243088349184$ | $1517333092761600$ | $9468276083871995904$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6046$ | $493040$ | $38955838$ | $3077056400$ | $243089242846$ | $19203908986160$ | $1517108949141118$ | $119851595982618320$ | $9468276085117144606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 230 curves (of which all are hyperelliptic):
- $y^2=64 x^6+9 x^5+32 x^4+75 x^3+75 x^2+67 x+15$
- $y^2=16 x^6+42 x^5+63 x^4+64 x^3+6 x^2+31 x+49$
- $y^2=48 x^6+47 x^5+31 x^4+34 x^3+18 x^2+14 x+68$
- $y^2=17 x^6+35 x^5+x^4+33 x^3+63 x^2+58 x+57$
- $y^2=51 x^6+26 x^5+3 x^4+20 x^3+31 x^2+16 x+13$
- $y^2=35 x^6+34 x^5+44 x^4+43 x^3+31 x^2+15 x+63$
- $y^2=26 x^6+23 x^5+53 x^4+50 x^3+14 x^2+45 x+31$
- $y^2=65 x^6+54 x^5+26 x^4+38 x^3+59 x^2+39 x+63$
- $y^2=37 x^6+4 x^5+78 x^4+35 x^3+19 x^2+38 x+31$
- $y^2=8 x^6+56 x^5+24 x^4+22 x^3+77 x^2+16 x+43$
- $y^2=33 x^6+33 x^5+37 x^4+23 x^3+50 x^2+7 x+18$
- $y^2=72 x^6+19 x^5+29 x^4+19 x^3+42 x^2+55 x+48$
- $y^2=58 x^6+57 x^5+8 x^4+57 x^3+47 x^2+7 x+65$
- $y^2=19 x^6+4 x^5+16 x^4+15 x^3+12 x^2+6 x+30$
- $y^2=57 x^6+12 x^5+48 x^4+45 x^3+36 x^2+18 x+11$
- $y^2=35 x^6+33 x^5+4 x^4+7 x^3+35 x^2+57 x+2$
- $y^2=26 x^6+20 x^5+12 x^4+21 x^3+26 x^2+13 x+6$
- $y^2=29 x^6+49 x^5+52 x^4+45 x^3+21 x^2+2 x+38$
- $y^2=8 x^6+68 x^5+77 x^4+56 x^3+63 x^2+6 x+35$
- $y^2=35 x^6+49 x^5+16 x^4+42 x^3+52 x^2+9 x+35$
- and 210 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.aq $\times$ 1.79.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.adu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.