| L(s) = 1 | + 2·3-s + 4-s + 9-s + 2·12-s + 8·13-s + 16-s − 4·19-s − 10·25-s − 4·27-s + 8·31-s + 36-s + 4·37-s + 16·39-s + 16·43-s + 2·48-s + 8·52-s − 8·57-s − 16·61-s + 64-s − 8·67-s − 4·73-s − 20·75-s − 4·76-s + 16·79-s − 11·81-s + 16·93-s + 20·97-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 1/2·4-s + 1/3·9-s + 0.577·12-s + 2.21·13-s + 1/4·16-s − 0.917·19-s − 2·25-s − 0.769·27-s + 1.43·31-s + 1/6·36-s + 0.657·37-s + 2.56·39-s + 2.43·43-s + 0.288·48-s + 1.10·52-s − 1.05·57-s − 2.04·61-s + 1/8·64-s − 0.977·67-s − 0.468·73-s − 2.30·75-s − 0.458·76-s + 1.80·79-s − 1.22·81-s + 1.65·93-s + 2.03·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.599314781\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.599314781\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.393998538973797562285424645673, −9.205467104844532229657218112988, −8.624667079434487291694904422005, −8.245010328271296459357780366393, −7.64010214491199898083268392854, −7.55563465371540871894331307120, −6.37349457460642388728354325328, −6.12986038892916091786195943044, −5.88407913223931048395780461484, −4.74683922157615295493069282209, −3.87985229263682105648190826671, −3.79391663707115759548696099652, −2.83833445427180997893704571146, −2.25140513775369021989127014661, −1.33827299261372059142982522511,
1.33827299261372059142982522511, 2.25140513775369021989127014661, 2.83833445427180997893704571146, 3.79391663707115759548696099652, 3.87985229263682105648190826671, 4.74683922157615295493069282209, 5.88407913223931048395780461484, 6.12986038892916091786195943044, 6.37349457460642388728354325328, 7.55563465371540871894331307120, 7.64010214491199898083268392854, 8.245010328271296459357780366393, 8.624667079434487291694904422005, 9.205467104844532229657218112988, 9.393998538973797562285424645673