Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 43 x^{2} )^{2}$ |
$1 - 16 x + 150 x^{2} - 688 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.291171725172$, $\pm0.291171725172$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $25$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1296$ | $3504384$ | $6404480784$ | $11710193504256$ | $21612468163145616$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $1894$ | $80548$ | $3425230$ | $147015148$ | $6321140278$ | $271816540660$ | $11688193293214$ | $502592645091004$ | $21611482878846214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 25 curves (of which all are hyperelliptic):
- $y^2=5 x^6+35 x^5+12 x^4+34 x^3+12 x^2+36 x+2$
- $y^2=x^6+16$
- $y^2=x^6+24 x^3+21$
- $y^2=10 x^6+20 x^5+26 x^4+22 x^3+12 x^2+18 x+24$
- $y^2=28 x^5+5 x^4+35 x^3+14 x^2+9 x+33$
- $y^2=15 x^6+28 x^5+x^4+13 x^3+6 x^2+19 x+15$
- $y^2=x^6+15 x^3+21$
- $y^2=19 x^6+15 x^4+15 x^2+19$
- $y^2=3 x^6+7 x^5+36 x^4+28 x^3+36 x^2+x+42$
- $y^2=31 x^6+25 x^4+25 x^2+31$
- $y^2=22 x^6+8 x^5+2 x^4+18 x^3+2 x^2+8 x+22$
- $y^2=30 x^6+14 x^5+16 x^4+25 x^3+16 x^2+14 x+30$
- $y^2=x^6+38 x^3+4$
- $y^2=5 x^6+18 x^5+5 x^4+36 x^3+x^2+3 x+3$
- $y^2=42 x^6+14 x^5+x^4+36 x^3+x^2+14 x+42$
- $y^2=x^6+9 x^3+41$
- $y^2=24 x^6+5 x^5+39 x^4+x^3+33 x^2+42 x+31$
- $y^2=22 x^5+14 x^4+4 x^3+14 x^2+22 x$
- $y^2=22 x^6+7 x^5+13 x^4+7 x^3+23 x^2+27 x+32$
- $y^2=12 x^6+11 x^5+35 x^4+15 x^3+35 x^2+11 x+12$
- $y^2=31 x^6+2 x^4+33 x^3+2 x^2+31$
- $y^2=34 x^6+21 x^5+28 x^4+14 x^3+15 x^2+7 x+28$
- $y^2=21 x^6+26 x^5+x^4+6 x^3+31 x^2+10 x+12$
- $y^2=6 x^6+29 x^5+11 x^4+35 x^3+11 x^2+29 x+6$
- $y^2=27 x^6+2 x^4+2 x^2+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.