Properties

Label 2.13.ai_bq
Base Field $\F_{13}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 13 x^{2} )^{2}$
Frobenius angles:  $\pm0.312832958189$, $\pm0.312832958189$
Angle rank:  $1$ (numerical)
Jacobians:  5

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 5 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 100 32400 5244100 829440000 137678102500 23258821107600 3935731667868100 665417390653440000 112459061652687456100 19005152104108790010000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 6 190 2382 29038 370806 4818670 62722302 815731678 10604844006 137859857950

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{13}$
The isogeny class factors as 1.13.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
All geometric endomorphisms are defined over $\F_{13}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.13.a_k$2$2.169.u_qw
2.13.i_bq$2$2.169.u_qw
2.13.e_d$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.13.a_k$2$2.169.u_qw
2.13.i_bq$2$2.169.u_qw
2.13.e_d$3$(not in LMFDB)
2.13.am_ck$4$(not in LMFDB)
2.13.ak_by$4$(not in LMFDB)
2.13.ac_c$4$(not in LMFDB)
2.13.a_ak$4$(not in LMFDB)
2.13.c_c$4$(not in LMFDB)
2.13.k_by$4$(not in LMFDB)
2.13.m_ck$4$(not in LMFDB)
2.13.ae_d$6$(not in LMFDB)
2.13.a_ay$8$(not in LMFDB)
2.13.a_y$8$(not in LMFDB)
2.13.ag_x$12$(not in LMFDB)
2.13.g_x$12$(not in LMFDB)