Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 97 x^{2} )^{2}$ |
| $1 - 20 x + 294 x^{2} - 1940 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.330505784077$, $\pm0.330505784077$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $112$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7744$ | $90326016$ | $836463893056$ | $7839201269661696$ | $73740945137519116864$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $9598$ | $916494$ | $88549246$ | $8587169358$ | $832968359422$ | $80798264600334$ | $7837433749213438$ | $760231062131074638$ | $73742412709238782078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=59 x^6+39 x^5+89 x^3+28 x+84$
- $y^2=89 x^6+36 x^5+78 x^4+53 x^3+94 x^2+17 x+52$
- $y^2=29 x^6+74 x^5+89 x^4+52 x^3+46 x^2+86 x+40$
- $y^2=24 x^6+30 x^5+68 x^4+43 x^3+2 x^2+46 x+78$
- $y^2=60 x^6+63 x^5+8 x^4+55 x^3+8 x^2+63 x+60$
- $y^2=77 x^6+63 x^5+45 x^4+23 x^3+45 x^2+63 x+77$
- $y^2=77 x^6+26 x^5+52 x^4+2 x^3+48 x^2+35 x+66$
- $y^2=35 x^6+67 x^5+42 x^4+47 x^3+63 x^2+52 x+78$
- $y^2=49 x^6+44 x^5+x^4+12 x^3+76 x^2+71 x+75$
- $y^2=96 x^6+12 x^5+39 x^4+33 x^3+34 x^2+56 x+49$
- $y^2=52 x^6+58 x^5+64 x^4+39 x^3+64 x^2+58 x+52$
- $y^2=12 x^6+69 x^5+44 x^4+x^2+7 x+33$
- $y^2=82 x^5+7 x^3+28 x^2+38 x+6$
- $y^2=22 x^6+20 x^5+31 x^4+83 x^3+42 x^2+x+24$
- $y^2=65 x^6+91 x^5+85 x^4+70 x^3+36 x^2+43 x+88$
- $y^2=24 x^6+63 x^5+58 x^4+54 x^3+13 x^2+7 x+53$
- $y^2=5 x^6+58 x^3+60$
- $y^2=94 x^6+65 x^5+58 x^4+40 x^3+58 x^2+65 x+94$
- $y^2=45 x^6+96 x^5+76 x^4+81 x^3+22 x^2+82 x+61$
- $y^2=79 x^6+16 x^5+60 x^4+51 x^3+47 x^2+57 x+37$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.