Properties

Label 2-6975-1.1-c1-0-208
Degree $2$
Conductor $6975$
Sign $-1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 2·7-s − 3·8-s + 4·11-s + 2·14-s − 16-s + 2·17-s − 8·19-s + 4·22-s − 8·23-s − 2·28-s + 31-s + 5·32-s + 2·34-s − 8·37-s − 8·38-s + 6·41-s − 4·44-s − 8·46-s + 4·47-s − 3·49-s + 6·53-s − 6·56-s − 10·59-s − 14·61-s + 62-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.755·7-s − 1.06·8-s + 1.20·11-s + 0.534·14-s − 1/4·16-s + 0.485·17-s − 1.83·19-s + 0.852·22-s − 1.66·23-s − 0.377·28-s + 0.179·31-s + 0.883·32-s + 0.342·34-s − 1.31·37-s − 1.29·38-s + 0.937·41-s − 0.603·44-s − 1.17·46-s + 0.583·47-s − 3/7·49-s + 0.824·53-s − 0.801·56-s − 1.30·59-s − 1.79·61-s + 0.127·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71528964305202664128578913928, −6.61182537228330675463218110057, −6.13435314788126744493252717468, −5.44702227752771890436261303291, −4.50499697920881557630168978181, −4.16535865218501984349592475156, −3.47002863835938159210203980612, −2.30822361958007473419290328689, −1.41300095124550131832504594810, 0, 1.41300095124550131832504594810, 2.30822361958007473419290328689, 3.47002863835938159210203980612, 4.16535865218501984349592475156, 4.50499697920881557630168978181, 5.44702227752771890436261303291, 6.13435314788126744493252717468, 6.61182537228330675463218110057, 7.71528964305202664128578913928

Graph of the $Z$-function along the critical line